Chapter 14: Problem 72
What is meant by the term rate-determining step?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 14: Problem 72
What is meant by the term rate-determining step?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the following hypothetical aqueous reaction: \(\mathrm{A}(a q) \longrightarrow \mathrm{B}(a q)\). A flask is charged with \(0.065 \mathrm{~mol}\) of \(\mathrm{A}\) in a total volume of \(100.0 \mathrm{~mL}\). The following data are collected: $$ \begin{array}{lccccc} \hline \text { Time (min) } & 0 & 10 & 20 & 30 & 40 \\ \hline \text { Moles of A } & 0.065 & 0.051 & 0.042 & 0.036 & 0.031 \\ \hline \end{array} $$ (a) Calculate the number of moles of \(\mathrm{B}\) at each time in the table, assuming that there are no molecules of \(\mathrm{B}\) at time zero, and that \(A\) cleanly converts to \(B\) with no intermediates. (b) Calculate the average rate of disappearance of \(\mathrm{A}\) for each 10 -min interval in units of \(M / \mathrm{s}\). (c) Between \(t=10 \mathrm{~min}\) and \(t=30 \mathrm{~min},\) what is the average rate of appearance of \(\mathrm{B}\) in units of \(M / s\) ? Assume that the volume of the solution is constant.
What are the differences between an intermediate and a transition state?
(a) What are the units usually used to express the rates of reactions occurring in solution? (b) From your everyday experience, give two examples of the effects of temperature on the rates of reactions. (c) What is the difference between average rate and instantaneous rate?
The reaction \(2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)\) is second order in NO and first order in \(\mathrm{O}_{2}\). When [NO] \(=0.040 \mathrm{M}\) and \(\left[\mathrm{O}_{2}\right]=0.035 \mathrm{M},\) the observed rate of disappearance of \(\mathrm{NO}\) is \(9.3 \times 10^{-5} \mathrm{M} / \mathrm{s}\). (a) What is the rate of disappearance of \(\mathrm{O}_{2}\) at this moment? (b) What is the value of the rate constant? (c) What are the units of the rate constant? (d) What would happen to the rate if the concentration of NO were increased by a factor of \(1.8 ?\)
Many metallic catalysts, particularly the precious-metal ones, are often deposited as very thin films on a substance of high surface area per unit mass, such as alumina \(\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)\) or silica \(\left(\mathrm{SiO}_{2}\right)\). (a) Why is this an effective way of utilizing the catalyst material compared to having powdered metals? (b) How does the surface area affect the rate of reaction?
What do you think about this solution?
We value your feedback to improve our textbook solutions.