Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What factors determine whether a collision between two molecules will lead to a chemical reaction? (b) According to the collision model, why does temperature affect the value of the rate constant? (c) Does the rate constant for a reaction generally increase or decrease with an increase in reaction temperature?

Short Answer

Expert verified
(a) A successful collision between two molecules leading to a chemical reaction depends on 1) the energy of the collision being equal to or greater than the activation energy (Ea), and 2) proper orientation of the molecules during the collision. (b) Temperature affects the rate constant in the collision model as it increases the average kinetic energy of molecules, resulting in a higher fraction of molecules with enough energy to overcome Ea, and causing them to move faster, leading to a higher frequency of collisions. (c) The rate constant for a reaction generally increases with an increase in reaction temperature due to increased kinetic energy of the molecules and a higher rate of successful collisions.

Step by step solution

01

(a) Factors determining a successful collision)

To have a successful collision, two factors must be met: (1) the energy of the collision should be equal to or greater than the activation energy (Ea) of the reaction and (2) the molecules should have proper orientation when they collide. 1. Activation Energy (Ea): The minimum energy required for a reaction to occur. If the colliding molecules have kinetic energies equal to or greater than Ea, their collisions can overcome the energy barrier, break the reactant's bonds and form new bonds. 2. Orientation: Even if the molecules have enough energy, they must also collide with the correct orientation that allows the necessary bonds to break and form new ones. If the molecules don't have the proper orientation, they will not react, and no products will be formed.
02

(b) Collision model and the effect of temperature on the rate constant)

According to the collision model, the rate constant of a reaction is directly related to the frequency of successful collisions between the reactant molecules. Temperature plays a significant role in determining the rate constant for the following reasons: 1. As temperature increases, the average kinetic energy of the molecules increases. This results in an increased fraction of molecules having enough energy to overcome the activation energy barrier and thereby react. 2. Increased temperature also causes the molecules to move faster. This increased speed results in a higher frequency of collisions between the molecules. Both these factors contribute to an increase in the rate of successful collisions and, therefore, the rate constant with an increase in temperature.
03

(c) Increase or decrease of the rate constant with an increase in reaction temperature)

In general, the rate constant for a reaction increases with an increase in reaction temperature. This is because, as the temperature increases, the kinetic energy of the molecules increases, leading to more collisions between the reactant molecules. Moreover, a higher fraction of the molecules have enough energy to overcome the activation energy barrier, leading to a higher rate of successful collisions and an increased rate constant for the reaction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Sucrose \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right),\) commonly known as table sugar, reacts in dilute acid solutions to form two simpler sugars, glucose and fructose, both of which have the formula \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} .\) At \(23{ }^{\circ} \mathrm{C}\) and in \(0.5 \mathrm{M} \mathrm{HCl}\), the following data were obtained for the disappearance of sucrose: $$ \begin{array}{rl} \hline \text { Time }(\mathrm{min}) & {\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right](M)} \\ \hline 0 & 0.316 \\ 39 & 0.274 \\ 80 & 0.238 \\ 140 & 0.190 \\ 210 & 0.146 \\ \hline \end{array} $$ (a) Is the reaction first order or second order with respect to \(\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right] ?(\mathbf{b})\) What is the rate constant? (c) Using this rate constant, calculate the concentration of sucrose at 39,80,140 , and 210 min if the initial sucrose concentration was \(0.316 \mathrm{M}\) and the reaction was zero order in sucrose.

When chemists are performing kinetics experiments, the general rule of thumb is to allow the reaction to proceed for 4 half-lives. (a) Explain how you would be able to tell that the reaction has proceeded for 4 half-lives. (b) Let us suppose a reaction \(\mathrm{A} \rightarrow \mathrm{B}\) takes 6 days to proceed for 4 half-lives and is first order in A. However, when your lab partner performs this reaction for the first time, he does not realize how long it takes, and he stops taking kinetic data, monitoring the loss of A, after only 2 hours. Your lab partner concludes the reaction is zero order in A based on the data. Sketch a graph of [A] versus time to convince your lab partner the two of you need to be in the lab for a few days to obtain the proper rate law for the reaction.

As described in Exercise \(14.43,\) the decomposition of sulfuryl chloride \(\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)\) is a first-order process. The rate constant for the decomposition at \(660 \mathrm{~K}\) is \(4.5 \times 10^{-2} \mathrm{~s}^{-1}\). (a) If we begin with an initial \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) pressure of 450 torr, what is the pressure of this substance after \(60 \mathrm{~s} ?\) (b) At what time will the pressure of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) decline to one-tenth its initial value?

One of the many remarkable enzymes in the human body is carbonic anhydrase, which catalyzes the interconversion of carbon dioxide and water with bicarbonate ion and protons. If it were not for this enzyme, the body could not rid itself rapidly enough of the \(\mathrm{CO}_{2}\) accumulated by cell metabolism. The enzyme catalyzes the dehydration (release to air) of up to \(10^{7} \mathrm{CO}_{2}\) molecules per second. Which components of this description correspond to the terms enzyme, substrate, and turnover number?

The \(\mathrm{NO}_{x}\) waste stream from automobile exhaust includes species such as \(\mathrm{NO}\) and \(\mathrm{NO}_{2}\). Catalysts that convert these species to \(\mathrm{N}_{2}\) are desirable to reduce air pollution. (a) Draw the Lewis dot and VSEPR structures of \(\mathrm{NO}, \mathrm{NO}_{2},\) and \(\mathrm{N}_{2} .(\mathbf{b})\) Using a resource such as Table 8.4 , look up the energies of the bonds in these molecules. In what region of the electromagnetic spectrum are these energies? (c) Design a spectroscopic experiment to monitor the conversion of \(\mathrm{NO}_{x}\) into \(\mathrm{N}_{2}\), describing what wavelengths of light need to be monitored as a function of time.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free