Chapter 14: Problem 20
A flask is charged with \(0.100 \mathrm{~mol}\) of \(\mathrm{A}\) and allowed to react to form \(\mathrm{B}\) according to the hypothetical gas-phase reaction \(\mathrm{A}(g) \longrightarrow \mathrm{B}(g)\). The following data are collected: $$ \begin{array}{lccccc} \hline \text { Time (s) } & 0 & 40 & 80 & 120 & 160 \\ \hline \text { Moles of A } & 0.100 & 0.067 & 0.045 & 0.030 & 0.020 \\ \hline \end{array} $$ (a) Calculate the number of moles of \(\mathrm{B}\) at each time in the table, assuming that \(\mathrm{A}\) is cleanly converted to \(\mathrm{B}\) with no intermediates. (b) Calculate the average rate of disappearance of A for each 40 -s interval in units of \(\mathrm{mol} / \mathrm{s}\). (c) What additional information would be needed to calculate the rate in units of concentration per time?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.