Chapter 13: Problem 113
At \(35^{\circ} \mathrm{C}\) the vapor pressure of acetone, \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO},\) is 360 torr, and that of chloroform, \(\mathrm{CHCl}_{3}\), is 300 torr. Acetone and chloroform can form very weak hydrogen bonds between one another as follows: A solution composed of an equal number of moles of acetone and chloroform has a vapor pressure of 250 torr at \(35^{\circ} \mathrm{C}\). (a) What would be the vapor pressure of the solution if it exhibited ideal behavior? (b) Use the existence of hydrogen bonds between acetone and chloroform molecules to explain the deviation from ideal behavior. (c) Based on the behavior of the solution, predict whether the mixing of acetone and chloroform is an exothermic \(\left(\Delta H_{\text {soln }}<0\right)\) or endothermic \(\left(\Delta H_{\text {soln }}>0\right)\) process.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.