Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In terms of the arrangement and freedom of motion of the molecules, how are the nematic liquid crystalline phase and an ordinary liquid phase similar? How are they different?

Short Answer

Expert verified
In both the nematic liquid crystal phase and ordinary liquid phase, molecules have freedom of movement and there is no long-range positional order. However, they differ in molecular arrangement and orientation. In a nematic liquid crystal phase, molecules are parallel to each other with some degree of orientational order, while in an ordinary liquid phase, the arrangement appears random and disordered. Additionally, the movement in nematic liquid crystal phase is more constrained due to the orientational order, leading to preferential movement along the direction of alignment, as opposed to isotropic movement in all directions in ordinary liquid phase.

Step by step solution

01

Understanding Nematic Liquid Crystal Phase

A nematic liquid crystal phase is an intermediate phase between a solid and a liquid. In this state, the molecules have some degree of positional order, but they still have freedom to move. Specifically, molecules in the nematic phase are oriented in such a way that they are parallel to one another, but there is no long-range positional order like in a solid.
02

Understanding Ordinary Liquid Phase

In the ordinary liquid phase, molecules are close together and continuously moving but they lack any particular arrangement or orientation. Molecules in a liquid state have more freedom to move in comparison to those in solid, and there is no long-range positional or orientational order.
03

Similarities between Nematic Liquid Crystal Phase and Ordinary Liquid Phase

Both the nematic liquid crystal phase and ordinary liquid phase exhibit some degree of freedom for the movement of their molecules. In both phases, molecules can flow and change their positions. There is no long-range positional order present in both nematic and ordinary liquid phases.
04

Differences between Nematic Liquid Crystal Phase and Ordinary Liquid Phase

The main difference lies in the arrangement and orientation of their molecules. In a nematic liquid crystal phase, molecules exhibit a certain degree of orientational order as they align parallel to each other. In contrast, in an ordinary liquid phase, molecules lack any specific orientation and their arrangement appears random and disordered. In terms of molecular motion, the movement in nematic liquid crystal phase is more constrained compared to ordinary liquid phase due to the orientational order. The orientational order of nematic liquid crystal phase causes the molecules to preferentially move along the direction of alignment, while ordinary liquids allow isotropic movement in all directions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

It often happens that a substance possessing a smectic liquid crystalline phase just above the melting point passes into a nematic liquid crystalline phase at a higher temperature. Account for this type of behavior.

The fact that water on Earth can readily be found in all three states (solid, liquid, and gas) is in part a consequence of the fact that the triple point of water \(\left(T=0.01^{\circ} \mathrm{C}, P=0.006 \mathrm{~atm}\right)\) falls within a range of temperatures and pressures found on Earth. Saturn's largest moon Titan has a considerable amount of methane in its atmosphere. The conditions on the surface of Titan are estimated to be \(P=1.6\) atm and \(T=-178^{\circ} \mathrm{C}\). As seen from the phase diagram of methane (Figure 11.30 ), these conditions are not far from the triple point of methane, raising the tantalizing possibility that solid, liquid, and gaseous methane can be found on Titan. (a) What state would you expect to find methane in on the surface of Titan? (b) On moving upward through the atmosphere the pressure will decrease. If we assume that the temperature does not change, what phase change would you expect to see as we move away from the surface?

Suppose you have two colorless molecular liquids, one boiling at \(-84^{\circ} \mathrm{C}\), the other at \(34{ }^{\circ} \mathrm{C},\) and both at atmospheric pressure. Which of the following statements is correct? For each statement that is not correct, modify the statement so that it is correct. (a) The higher-boiling liquid has greater total intermolecular forces than the lower- boiling liquid. (b) The lower-boiling liquid must consist of nonpolar molecules. (c) The lower-boiling liquid has a lower molecular weight than the higher-boiling liquid. (d) The two liquids have identical vapor pressures at their normal boiling points. (e) \(\mathrm{At}-84{ }^{\circ} \mathrm{C}\) both liquids have vapor pressures of \(760 \mathrm{~mm} \mathrm{Hg}\).

The boiling points, surface tensions, and viscosities of water and several alchohols are as follows: $$ \begin{array}{lrcc} & \begin{array}{l} \text { Boiling } \\ \text { Point }\left({ }^{\circ} \mathbf{C}\right) \end{array} & \begin{array}{l} \text { Surface } \\ \text { Tension }\left(\mathbf{J} / \mathbf{m}^{2}\right) \end{array} & \begin{array}{l} \text { Viscosity } \\ (\mathbf{k g} / \mathbf{m}-\mathbf{s}) \end{array} \\ \hline \text { Water, } \mathrm{H}_{2} \mathrm{O} & 100 & 7.3 \times 10^{-2} & 0.9 \times 10^{-3} \\ \text {Ethanol, } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} & 78 & 2.3 \times 10^{-2} & 1.1 \times 10^{-3} \\ \text {Propanol, } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} & 97 & 2.4 \times 10^{-2} & 2.2 \times 10^{-3} \\ n \text { -Butanol, } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} & 117 & 2.6 \times 10^{-2} & 2.6 \times 10^{-3} \\\ \text {Ethylene glycol, } \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} & 197 & 4.8 \times 10^{-2} & 26 \times 10^{-3} \end{array} $$ (a) For ethanol, propanol, and \(n\) -butanol the boiling points, surface tensions, and viscosities all increase. What is the reason for this increase? (b) How do you explain the fact that propanol and ethylene glycol have similar molecular weights \((60\) versus \(62 \mathrm{amu}),\) yet the viscosity of ethylene glycol is more than 10 times larger than propanol? (c) How do you explain the fact that water has the highest surface tension but the lowest viscosity?

Ethylene glycol \(\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)\) is the major component of antifreeze. It is a slightly viscous liquid, not very volatile at room temperature, with a boiling point of \(198^{\circ} \mathrm{C}\). Pentane \(\left(\mathrm{C}_{5} \mathrm{H}_{12}\right),\) which has about the same molecular weight, is a nonviscous liquid that is highly volatile at room temperature and whose boiling point is \(36.1^{\circ} \mathrm{C}\). Explain the differences in the physical properties of the two substances.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free