Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The planet Jupiter has a surface temperature of \(140 \mathrm{~K}\) and a mass 318 times that of Earth. Mercury (the planet) has a surface temperature between \(600 \mathrm{~K}\) and \(700 \mathrm{~K}\) and a mass 0.05 times that of Earth. On which planet is the atmosphere more likely to obey the ideal-gas law? Explain.

Short Answer

Expert verified
Based on the analysis, the atmosphere of Mercury is more likely to obey the ideal gas law compared to Jupiter. Mercury's higher temperature (between 600 K and 700 K) and lower mass (0.05 times Earth's mass) relative to Jupiter (whose temperature is 140 K and has a mass 318 times Earth's mass) make it more likely to meet the conditions necessary for the ideal gas law to be a valid approximation.

Step by step solution

01

1. Jupiter's characteristics

Jupiter has a surface temperature of 140 K and a mass 318 times that of Earth.
02

2. Mercury's characteristics

Mercury has a surface temperature between 600 K and 700 K, and a mass 0.05 times that of Earth.
03

3. Comparing temperatures

Jupiter has a lower temperature (140 K) when compared to Mercury's temperature range (600 K - 700 K).
04

4. Comparing masses

Jupiter has a much larger mass (318 times Earth's mass) compared to Mercury's mass (0.05 times Earth's mass).
05

5. Analyzing ideal gas law conditions

As stated earlier, the ideal gas law tends to work well when the gas particles have high temperatures and low densities. Since Mercury's temperature is higher than Jupiter's, it indicates that the gas particles on Mercury will have more energetic motion, reducing the significance of any intermolecular attractive forces. Additionally, Jupiter's larger mass implies that it likely has a more dense atmosphere than Mercury, which would lead to more deviations from the ideal gas law due to increased particle interactions.
06

6. Conclusion:

Based on the analysis, the atmosphere of Mercury is more likely to obey the ideal gas law compared to Jupiter. Mercury's higher temperature and lower mass relative to Jupiter make it more likely to meet the conditions necessary for the ideal gas law to be a valid approximation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 6.53 -g sample of a mixture of magnesium carbonate and calcium carbonate is treated with excess hydrochloric acid. The resulting reaction produces \(1.72 \mathrm{~L}\) of carbon dioxide gas at \(28^{\circ} \mathrm{C}\) and 743 torr pressure. (a) Write balanced chemical equations for the reactions that occur between hydrochloric acid and each component of the mixture. (b) Calculate the total number of moles of carbon dioxide that forms from these reactions. (c) Assuming that the reactions are complete, calculate the percentage by mass of magnesium carbonate in the mixture.

A 1.42-g sample of helium and an unknown mass of \(\mathrm{O}_{2}\) are mixed in a flask at room temperature. The partial pressure of the helium is 42.5 torr, and that of the oxygen is 158 torr. What is the mass of the oxygen?

A fixed quantity of gas at \(21^{\circ} \mathrm{C}\) exhibits a pressure of 752 torr and occupies a volume of 5.12 L. (a) Calculate the volume the gas will occupy if the pressure is increased to 1.88 atm while the temperature is held constant. (b) Calculate the volume the gas will occupy if the temperature is increased to \(175^{\circ} \mathrm{C}\) while the pressure is held constant.

Calcium hydride, \(\mathrm{CaH}_{2}\), reacts with water to form hydrogen gas: $$ \mathrm{CaH}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(a q)+2 \mathrm{H}_{2}(g) $$ This reaction is sometimes used to inflate life rafts, weather balloons, and the like, when a simple, compact means of generating \(\mathrm{H}_{2}\) is desired. How many grams of \(\mathrm{CaH}_{2}\) are needed to generate \(145 \mathrm{~L}\) of \(\mathrm{H}_{2}\) gas if the pressure of \(\mathrm{H}_{2}\) is 825 torr at \(21{ }^{\circ} \mathrm{C}\) ?

Does the effect of intermolecular attraction on the properties of a gas become more significant or less significant if (a) the gas is compressed to a smaller volume at constant temperature; (b) the temperature of the gas is increased at constant volume?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free