Chapter 10: Problem 104
Carbon dioxide, which is recognized as the major contributor to global warming as a "greenhouse gas," is formed when fossil fuels are combusted, as in electrical power plants fueled by coal, oil, or natural gas. One potential way to reduce the amount of \(\mathrm{CO}_{2}\) added to the atmosphere is to store it as a compressed gas in underground formations. Consider a 1000 -megawatt coalfired power plant that produces about \(6 \times 10^{6}\) tons of \(\mathrm{CO}_{2}\) per year. (a) Assuming ideal-gas behavior, \(1.00 \mathrm{~atm}\), and \(27^{\circ} \mathrm{C},\) calculate the volume of \(\mathrm{CO}_{2}\) produced by this power plant. (b) If the \(\mathrm{CO}_{2}\) is stored underground as a liquid at \(10^{\circ} \mathrm{C}\) and \(120 \mathrm{~atm}\) and a density of \(1.2 \mathrm{~g} / \mathrm{cm}^{3},\) what volume does it possess? (c) If it is stored underground as a gas at \(36^{\circ} \mathrm{C}\) and \(90 \mathrm{~atm},\) what volume does it occupy?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.