Chapter 15: Problem 94
The reaction \(2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)\) is first order in \(\mathrm{H}_{2} \mathrm{O}_{2}\) and under certain conditions has a rate constant of 0.00752 \(\mathrm{s}^{-1}\) at \(20.0^{\circ} \mathrm{C} .\) A reaction vessel initially contains 150.0 \(\mathrm{mL}\) of 30.0\(\%\) \(\mathrm{H}_{2} \mathrm{O}_{2}\) by mass solution (the density of the solution is 1.11 \(\mathrm{g} / \mathrm{mL} )\) . The gaseous oxygen is collected over water at \(20.0^{\circ} \mathrm{C}\) as it forms. What volume of \(\mathrm{O}_{2}\) forms in 85.0 seconds at a barometric pressure of 742.5 \(\mathrm{mmHg}\) ? (The vapor pressure of water at this temperature is 17.5 \(\mathrm{mm} \mathrm{g} . )\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.