Chapter 15: Problem 114
The first-order integrated rate law for a reaction \(\mathrm{A} \longrightarrow\) products is derived from the rate law using calculus. \begin{equation} \begin{aligned} \text { Rate } &=k[\mathrm{A}] \quad \text { (first-order rate law) } \\ \text { Rate } &=\frac{d[\mathrm{A}]}{d t} \\\ \frac{d[\mathrm{A}]}{d t} &=-k[\mathrm{A}] \end{aligned} \end{equation} The equation just given is a first-order, separable differential equa- tion that can be solved by separating the variables and integrating: \begin{equation} \begin{aligned} \frac{d[\mathrm{A}]}{[\mathrm{A}]} &=-k d t \\\ \int_{[\mathrm{A}]_{0}}^{[\mathrm{A]}} \frac{d[\mathrm{A}]}{[\mathrm{A}]} &=-\int_{0}^{t} k d t \end{aligned} \end{equation} In the integral just given, \([\mathrm{A}]_{0}\) is the initial concentration of \(\mathrm{A} . \mathrm{We}\) then evaluate the integral: \begin{equation} \begin{aligned}[\ln [\mathrm{A}]]_{[\mathrm{A}]_{0}}^{[\mathrm{Al}} &=-k[t]_{0}^{t} \\ \ln [\mathrm{A}]-\ln [\mathrm{A}]_{0} &=-k t \end{aligned} \end{equation} \begin{equation} \ln [\mathrm{A}]=-k t+\ln [\mathrm{A}]_{0}(\text { integrated rate law }) \end{equation} \begin{equation} \begin{array}{l}{\text { a. Use a procedure similar to the one just shown to derive an inte- }} \\ {\text { grated rate law for a reaction } A \longrightarrow \text { products, which is one-half- }} \\ {\text { order in the concentration of } A \text { (that is, Rate }=k[A]^{1 / 2} )}\end{array} \end{equation} \begin{equation} \begin{array}{l}{\text { b. Use the result from part a to derive an expression for the half-life }} \\ {\text { of a one-half-order reaction. }}\end{array} \end{equation}
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.