Chapter 9: Problem 41
Of the four general types of solids, which one(s) (a) are generally low-boiling? (b) are ductile and malleable? (c) are generally soluble in nonpolar solvents?
Chapter 9: Problem 41
Of the four general types of solids, which one(s) (a) are generally low-boiling? (b) are ductile and malleable? (c) are generally soluble in nonpolar solvents?
All the tools & learning materials you need for study success - in one app.
Get started for freeDichloromethane, \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\), is widely used as a "degreaser" and paint stripper. Its vapor pressure is \(381.0 \mathrm{~mm} \mathrm{Hg}\) at \(21.9^{\circ} \mathrm{C}\) and \(465.8 \mathrm{~mm} \mathrm{Hg}\) at \(26.9^{\circ} \mathrm{C}\). Estimate (a) its heat of vaporization \(\left(\Delta H_{\text {vap }}\right)\). (b) its normal boiling point.
The data below give the vapor pressure of octane, a major component of gasoline. $$ \begin{array}{lllcl} \mathrm{vp}(\mathrm{mm} \mathrm{Hg}) & 10 & 40 & 100 & 400 \\ t\left({ }^{\circ} \mathrm{C}\right) & 19.2 & 45.1 & 65.7 & 104.0 \end{array} $$ Plot \(\ln (\mathrm{vp})\) versus \(1 / T\). Use your graph to estimate the heat of vaporization of octane. \(\left(\ln P=A-\frac{\Delta H_{\mathrm{vap}}}{R}\left(\frac{1}{T}\right),\right.\) where \(A\) is the \(y\) -intercept and \(\Delta H_{\text {vap }}\) is the slope.)
In the LiCl structure shown in Figure 9.21 , the chloride ions form a face- centered cubic unit cell \(0.513 \mathrm{nm}\) on an edge. The ionic radius of \(\mathrm{Cl}^{-}\) is \(0.181 \mathrm{nm} .\) (a) Along a cell edge, how much space is between the \(\mathrm{Cl}^{-}\) ions? (b) Would an \(\mathrm{Na}^{+}\) ion \((r=0.095 \mathrm{nm})\) fit into this space? a \(\mathrm{K}^{+}\) ion \((r=0.133 \mathrm{nm}) ?\)
Consider a sealed flask with a movable piston that contains \(5.25 \mathrm{~L}\) of \(\mathrm{O}_{2}\) saturated with water vapor at \(25^{\circ} \mathrm{C}\). The piston is depressed at constant temperature so that the gas is compressed to a volume of \(2.00 \mathrm{~L}\). (Use the table in Appendix 1 for the vapor pressure of water at various temperatures.) (a) What is the vapor pressure of water in the compressed gas mixture? (b) How many grams of water condense when the gas mixture is compressed?
Arrange the following in order of decreasing boiling point. (a) \(\mathrm{I}_{2}\) (b) \(\mathrm{F}_{2}\) (c) \(\mathrm{Cl}_{2}\) (d) \(\mathrm{Br}_{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.