(c) all sublevels where \(\mathbf{n}=5\)
For an energy level \(\mathbf{n}=5\), we must first identify the possible values for the azimuthal quantum number \(\mathbf{l}\), which range from \(0\) to \(\mathbf{n}-1\). In this case, the possible values for \(\mathbf{l}\) are \(0, 1, 2, 3, 4\). Now, let's find the possible values for \(\mathbf{m}_{\ell}\) for each \(\mathbf{l}\):
1. For \(\mathbf{l}=0\) (s sublevel), \(\mathbf{m}_{\ell}=0\).
2. For \(\mathbf{l}=1\) (p sublevel), \(\mathbf{m}_{\ell}=-1, 0, 1\).
3. For \(\mathbf{l}=2\) (d sublevel), \(\mathbf{m}_{\ell}=-2, -1, 0, 1, 2\).
4. For \(\mathbf{l}=3\) (f sublevel), \(\mathbf{m}_{\ell}=-3, -2, -1, 0, 1, 2, 3\).
5. For \(\mathbf{l}=4\) (g sublevel), \(\mathbf{m}_{\ell}=-4, -3, -2, -1, 0, 1, 2, 3, 4\).
So, for all sublevels where \(\mathbf{n}=5\), the possible values of \(\mathbf{m}_{\ell}\) are:
s sublevel: \(\mathbf{m}_{\ell}=0\).
p sublevel: \(\mathbf{m}_{\ell}=-1, 0, 1\).
d sublevel: \(\mathbf{m}_{\ell}=-2, -1, 0, 1, 2\).
f sublevel: \(\mathbf{m}_{\ell}=-3, -2, -1, 0, 1, 2, 3\).
g sublevel: \(\mathbf{m}_{\ell}=-4, -3, -2, -1, 0, 1, 2, 3, 4\).