Chapter 5: Problem 42
A certain laser uses a gas mixture consisting of 9.00 g HCl, 2.00 g H2, and 165.0 g of Ne. What pressure is exerted by the mixture in a 75.0-L tank at 228C? Which gas has the smallest partial pressure?
Chapter 5: Problem 42
A certain laser uses a gas mixture consisting of 9.00 g HCl, 2.00 g H2, and 165.0 g of Ne. What pressure is exerted by the mixture in a 75.0-L tank at 228C? Which gas has the smallest partial pressure?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe contents of a tank of natural gas at 1.20 atm is analyzed. The analysis showed the following mole percents: 88.6% CH4, 8.9% C2H6, and 2.5% C3H8. What is the partial pressure of each gas in the tank?
Nitrogen oxide is a pollutant commonly found in smokestack emissions. One way to remove it is to react it with ammonia. 4NH3(g) 1 6NO(g) 9: 5N2(g) 1 6H2O(l) How many liters of ammonia are required to change 12.8 L of nitrogen oxide to nitrogen gas? Assume 100% yield and that all gases are measured at the same temperature and pressure.
Consider two bulbs \(\mathrm{A}\) and \(\mathrm{B}\), identical in volume and temperature. Bulb A contains \(1.0 \mathrm{~mol}\) of \(\mathrm{N}_{2}\) and bulb \(\mathrm{B}\) has \(1.0 \mathrm{~mol}\) of \(\mathrm{NH}_{3} .\) Both bulbs are connected by a tube with a valve that is closed. (a) Which bulb has the higher pressure? (b) Which bulb has the gas with the higher density? (c) Which bulb has molecules with a higher average kinetic energy? (d) Which bulb has a gas whose molecules move with a faster molecular speed? (e) If the valve between the two bulbs is opened, how will the pressure change? (f) If \(2.0 \mathrm{~mol}\) of He are added while the valve is opened, what fraction of the total pressure will be due to helium?
Consider three sealed tanks all at the same temperature, pressure, and volume. Tank A contains \(\mathrm{SO}_{2}\) gas. Tank B contains \(\mathrm{O}_{2}\) gas. Tank C contains \(\mathrm{CH}_{4}\) gas. Use LT (for "is less than"), GT (for "is greater than"), EQ (for "is equal to"), or MI (for " more information required") as answers to the blanks below. (a) The mass of \(\mathrm{SO}_{2}\) in tank \(\mathrm{A}\) the mass of \(\mathrm{O}_{2}\) in \(\operatorname{tank} \mathrm{B}\). (b) The average translational energy of \(\mathrm{CH}_{4}\) in \(\operatorname{tank} \mathrm{C}\) the average translational energy of \(\mathrm{SO}_{2}\) in \(\operatorname{tank} \mathrm{A}\) (c) It takes \(20 \mathrm{~s}\) for all of the \(\mathrm{O}_{2}\) gas in tank \(\mathrm{B}\) to effuse out of a pinhole in the tank. The time it takes for all of the \(\mathrm{SO}_{2}\) to effuse out of tank A from an identical pinhole \(40 \mathrm{~s}\) (d) The density of \(\mathrm{O}_{2}\) in tank \(\mathrm{B} \longrightarrow\) the density of \(\mathrm{CH}_{4}\) in tank C. (e) The temperature in tank \(\mathrm{A}\) is increased from \(150 \mathrm{~K}\) to \(300 \mathrm{~K}\). The temperature in tank \(\mathrm{B}\) is kept at \(150 \mathrm{~K}\). The pressure in tank \(\mathrm{A}\) is half the pressure in \(\operatorname{tank}\) B.
Ammonium nitrate can be used as an effective explosive because it decomposes into a large number of gaseous products. At a sufficiently high temperature, ammonium nitrate decomposes into nitrogen, oxygen, and steam. (a) Write a balanced net ionic equation for the decomposition of ammonium nitrate. (b) If 2.00 kg of ammonium nitrate are sealed in a 50.0-L steel drum and heated to 745°C, what is the resulting pressure in the drum after decomposition? (Assume 100% decomposition.) 40\. Acetone peroxide, C9H
What do you think about this solution?
We value your feedback to improve our textbook solutions.