Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write balanced equations for the following reactions in basic solution. (a) \(\mathrm{SO}_{2}(g)+\mathrm{I}_{2}(a q) \longrightarrow \mathrm{SO}_{3}(g)+\mathrm{I}^{-}(a q)\) (b) \(\mathrm{Zn}(s)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NH}_{3}(a q)+\mathrm{Zn}^{2+}(a q)\) (c) \(\mathrm{ClO}^{-}(a q)+\mathrm{CrO}_{2}^{-}(a q) \longrightarrow \mathrm{Cl}^{-}(a q)+\mathrm{CrO}_{4}^{2-}(a q)\) (d) \(\mathrm{K}(s)+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{K}^{+}(a q)+\mathrm{H}_{2}(g)\)

Short Answer

Expert verified
2 Cl^−(aq) + CrO4^2−(aq) + 14 OH^−(aq)

Step by step solution

01

Break into half-reactions and identify oxidation and reduction

Separate the given equation into oxidation and reduction half-reactions: Oxidation half-reaction: SO2(g) -> SO3(g) Reduction half-reaction: I2(aq) -> 2 I^−(aq)
02

Balance half-reactions under basic conditions

For the oxidation half-reaction: 1. Balance the oxygen atoms: SO2(g) + H2O(l) -> SO3(g) + 2 H^+(aq) 2. Balance the hydrogen atoms: SO2(g) + H2O(l) -> SO3(g) + 2 H^+(aq) + 2 e^− 3. Balance the charges under basic conditions by adding same number of OH^-: SO2(g) + H2O(l) -> SO3(g) + 2 H2O(l) + 2 e^− For the reduction half-reaction: 1. Balance the Iodine atoms: I2(aq) -> 2 I^−(aq) 2. Balance the charges: I2(aq) + 2 e^− -> 2 I^−(aq)
03

Combine balanced half-reactions and simplify

Combine the balanced half-reactions: SO2(g) + H2O(l) + I2(aq) + 2 e^− -> SO3(g) + 2 H2O(l) + 2 I^−(aq) + 2 e^− Cancel 2 electrons and 2 H2O(l) on both sides: SO2(g) + I2(aq) -> SO3(g) + 2 I^−(aq) (b) Zn(s) + NO3^−(aq) -> NH3(aq) + Zn^2+(aq)
04

Break into half-reactions and identify oxidation and reduction

Separate the given equation into oxidation and reduction half-reactions: Oxidation half-reaction: Zn(s) -> Zn^2+(aq) Reduction half-reaction: NO3^−(aq) -> NH3(aq)
05

Balance half-reactions under basic conditions

For the oxidation half-reaction: 1. Balance the zinc atoms: Zn(s) -> Zn^2+(aq) 2. Balance the charges: Zn(s) -> Zn^2+(aq) + 2 e^− For the reduction half-reaction: 1. Balance the nitrogen atoms: NO3^−(aq) -> NH3(aq) 2. Balance the hydrogen atoms: NO3^−(aq) + 6 H^+(aq) -> NH3(aq) + 3 H2O(l) 3. Balance the charges under basic conditions: NO3^−(aq) + 6 H^+(aq) + 8 OH^−(aq) -> NH3(aq) + 3 H2O(l) + 5 e^−
06

Find the least common multiple of the electrons

The least common multiple of 2 e^−(from oxidation) and 5 e^−(from reduction) is 10 e^−.
07

Balance electrons and combine half-reactions

Multiply the oxidation half-reaction by 5, and the reduction half-reaction by 2, then combine: 5 Zn(s) -> 5 Zn^2+(aq) + 10 e^− 2(NO3^−(aq) + 6 H^+(aq) + 8 OH^−(aq)) -> 2(NH3(aq) + 3 H2O(l) + 5 e^−) 5 Zn(s) + 2 NO3^−(aq) + 12 H^+(aq) + 16 OH^−(aq) -> 5 Zn^2+(aq) + 10 e^− + 2 NH3(aq) + 6 H2O(l) + 10 e^− Cancel 10 electrons and 6 H2O(l) on both sides, then simplify: 5 Zn(s) + 2 NO3^−(aq) + 12 H^+(aq) + 10 OH^−(aq) -> 5 Zn^2+(aq) + 2 NH3(aq) (c) ClO^−(aq) + CrO2^−(aq) -> Cl^−(aq) + CrO4^2−(aq)
08

Break into half-reactions and identify oxidation and reduction

Separate the given equation into oxidation and reduction half-reactions: Oxidation half-reaction: ClO^−(aq) -> Cl^−(aq) Reduction half-reaction: CrO2^−(aq) -> CrO4^2−(aq)
09

Balance half-reactions under basic conditions

For the oxidation half-reaction: 1. Balance the chlorine atoms: ClO^−(aq) -> Cl^−(aq) 2. Balance the oxygen atoms: ClO^−(aq) + 2 H^+(aq) + H2O(l) -> Cl^−(aq) + 4 OH^−(aq) 3. Balance the charges under basic conditions: ClO^- + H2O -> Cl^- + 2 OH^- For the reduction half-reaction: 1. Balance the chromium atoms: CrO2^−(aq) -> CrO4^2−(aq) 2. Balance the oxygen atoms: CrO2^−(aq) + 2 H2O(l) -> CrO4^2−(aq) + 4 H^+(aq) 3. Balance the charges under basic conditions: CrO2^−(aq) + 4 H2O(l) -> CrO4^2−(aq) + 6 OH^−(aq) + 2 e^−
10

Balance electrons and combine half-reactions

Multiply the oxidation half-reaction by 2 to balance the electrons, then combine: 2(ClO^−(aq) + H2O(l)) -> 2(Cl^−(aq) + 2 OH^−(aq)) + 2 e^− CrO2^−(aq) + 4 H2O(l) -> CrO4^2−(aq) + 6 OH^−(aq) + 2 e^− 2 ClO^−(aq) + 2 H2O(l) + CrO2^−(aq) + 4 H2O(l) -> 2 Cl^−(aq) + 8 OH^−(aq) + CrO4^2−(aq) + 6 OH^−(aq) Cancel 2 electrons, and simplify the equation: 2 ClO^−(aq) + CrO2^−(aq) + 6 H2O(l) ->

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a salt bridge voltaic cell represented by the following reaction $$ \begin{aligned} \mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{Fe}^{2+}(a q) \longrightarrow & \mathrm{Mn}^{2+}(a q)+5 \mathrm{Fe}^{3+}(a q)+4 \mathrm{H}_{2} \mathrm{O} \end{aligned} $$ (a) What is the direction of the electrons in the external circuit? (b) What electrode can be used at the anode? (c) What is the reaction occurring at the cathode?

Consider a cell in which the reaction is $$ \mathrm{Pb}(s)+2 \mathrm{H}^{+}(a q) \longrightarrow \mathrm{Pb}^{2+}(a q)+\mathrm{H}_{2}(g) $$ (a) Calculate \(E^{\circ}\) for this cell. (b) Chloride ions are added to the \(\mathrm{Pb} \mid \mathrm{Pb}^{2+}\) half- cell to precipitate \(\mathrm{PbCl}_{2}\). The voltage is measured to be $$ \begin{array}{l} +0.210 \mathrm{~V} \text { . Taking }\left[\mathrm{H}^{+}\right]=1.0 \mathrm{M} \text { and } P_{\mathrm{H}_{2}}=1.0 \mathrm{~atm}, \text { cal- } \\\ \text { culate }\left[\mathrm{Pb}^{2+}\right] . \end{array} $$ (c) Taking [Cl ^ ] in (b) to be 0.10 M, calculate \(K_{\text {sp }}\) of \(\mathrm{PbCl}_{2}\).

Given the following information: $$ \begin{array}{ll} \mathrm{Ag}_{2} \mathrm{CrO}_{4}(s) \rightleftharpoons 2 \mathrm{Ag}^{+}(a q)+\mathrm{CrO}_{4}^{2-}(a q) & K_{\mathrm{sp}}=1 \times 10^{-12} \\ \mathrm{Ag}^{+}(a q)+e^{-} \longrightarrow \mathrm{Ag}(s) & E^{\circ}=+0.799 \mathrm{~V} \end{array} $$ find the standard reduction potential at \(25^{\circ} \mathrm{C}\) for the half- reaction $$ \mathrm{Ag}_{2} \mathrm{CrO}_{4}(s)+2 e^{-} \longrightarrow 2 \mathrm{Ag}(s)+\mathrm{CrO}_{4}^{2-}(a q) $$

Consider the following reaction at \(25^{\circ} \mathrm{C}\) : $$ \mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{Cl}^{-}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}_{2}(g) $$ The \(\left[\mathrm{H}^{+}\right]\) is adjusted by adding a buffer that is \(0.125 \mathrm{M}\) in lactic acid (HLac) and \(0.125 \mathrm{M}\) in sodium lactate (NaLac). The pressure of both gases is 1.00 atm and \(\left[\mathrm{Cl}^{-}\right]\) is \(0.200 \mathrm{M}\). \(\left(K_{\mathrm{a}}\right.\) for HLac is \(\left.1.4 \times 10^{-4} .\right)\) Will the cell function as a voltaic cell?

A lead storage battery delivers a current of \(6.00 \mathrm{~A}\) for one hour and 22 minutes at a voltage of \(12.0 \mathrm{~V}\). (a) How many grams of lead are converted to \(\mathrm{PbSO}_{4}\) ? (b) How much electrical energy is produced in kilowatt hours?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free