Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a voltaic cell in which the following reaction takes place in basic medium at \(25^{\circ} \mathrm{C}\). $$ \begin{aligned} 2 \mathrm{NO}_{3}^{-}(a q)+3 \mathrm{~S}^{2-}(a q)+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow & \\ & 3 \mathrm{~S}(s)+2 \mathrm{NO}(g)+8 \mathrm{OH}^{-}(a q) \end{aligned} $$ (a) Calculate \(E^{\circ} .\) (b) Write the Nernst equation for the cell voltage \(E\). (c) Calculate \(E\) under the following conditions: $$ P_{\mathrm{NO}}=0.994 \mathrm{~atm}, \mathrm{pH}=13.7,\left[\mathrm{~S}^{2-}\right]=0.154 \mathrm{M} $$ \(\left[\mathrm{NO}_{3}^{-}\right]=0.472 \mathrm{M}\)

Short Answer

Expert verified
\(2\mathrm{NO}_{3}^{-} + 3\mathrm{S}^{2-} + 4\mathrm{H}_2\mathrm{O} \longrightarrow 3\mathrm{S}(s) + 2\mathrm{NO}(g) + 8\mathrm{OH}^{-}\) Given conditions: \(P_{\mathrm{NO}} = 0.994\,\mathrm{atm}\), \(\mathrm{pH} = 13.7\), \([\mathrm{S}^{2-}]=0.154\,\mathrm{M}\), \([\mathrm{NO}_{3}^{-}] = 0.472\,\mathrm{M}\) (a) The standard cell potential (\(E^{\circ}\)): -0.816V (b) The Nernst equation for the cell voltage (\(E\)): \( E = -0.816 - \frac{RT}{10F} \ln\,\left(\frac{P_{\mathrm{NO}}^2[\mathrm{OH}^{-}]^8}{[\mathrm{NO}_3^{-}]^2[\mathrm{S}^{2-}]^3}\right) \) (c) The cell voltage (\(E\)) under the given conditions: -0.599V

Step by step solution

01

Determine the half reactions

In order to determine the standard electrode potentials, we need to first break down the overall reaction into half reactions. One half reaction will be for the reduction of \(\mathrm{NO}_{3}^{-}\), and the other half reaction will be for the oxidation of \(\mathrm{S}^{2-}\). The half reactions are as follows: (1) \(\mathrm{NO}_{3}^{-}(a q) + 2 \mathrm{H}_{2}\mathrm{O}\longrightarrow \mathrm{NO}(g) + 4 \mathrm{OH}^{-}(a q)\) (2) \(\mathrm{S}^{2-}(a q)\longrightarrow \mathrm{S}(s) + 2 \mathrm{e}^{-}\) We will balance these half reactions.
02

Balance the half reactions

In order to balance the half reactions, we will add appropriate numbers of electrons, water molecules, and hydroxide ions. Balancing each half reaction separately: Balanced Half Reaction (1): $$ \mathrm{NO}_{3}^{-}(a q) + 2 \mathrm{H}_{2}\mathrm{O} + 10 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(g) + 4 \mathrm{OH}^{-}(a q) $$ Balanced Half Reaction (2): $$ \mathrm{S}^{2-}(a q) + 2 \mathrm{e}^{-}\longrightarrow \mathrm{S}(s) $$ Now, multiply each half reaction by an appropriate factor, so that the number of electrons in each half reaction is equal. In this case, multiply half reaction (1) by 1 and half reaction (2) by 5.
03

Combine the half reactions to find the overall balanced reaction

After balancing the half reactions and ensuring equal numbers of electrons, combine them to create the overall balanced reaction: $$ 2\mathrm{NO}_{3}^{-}(a q) + 3 \mathrm{S}^{2-}(a q) + 4 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{S}(s) + 2 \mathrm{NO}(g) + 8 \mathrm{OH}^{-}(a q) $$
04

Find the corresponding standard electrode potentials

To calculate \(E^{\circ}\), we need the standard electrode potentials for both half reactions. From a standard reduction potential table, we can find the following: (1) \(\mathrm{NO}_{3}^{-}(a q) + 2 \mathrm{H}_{2}\mathrm{O} + 10\mathrm{e}^{-}\longrightarrow \mathrm{NO}(g) + 4 \mathrm{OH}^{-}(a q): E_1^{\circ} = -0.956\,\mathrm{V}\) (2) \(\mathrm{S}^{2-}(a q) + 2\mathrm{e}^{-}\longrightarrow \mathrm{S}(s): E_2^{\circ} = -0.14\,\mathrm{V}\)
05

Calculate the standard cell potential\(E^{\circ}\)

The standard cell potential can be calculated using the standard reduction potentials of both half reactions: $$ E^{\circ}= E_{1}^{\circ} - E_{2}^{\circ}= -0.956 - (-0.14) = -0.816 \,\mathrm{V} $$ (a) The standard cell potential \(E^{\circ} = -0.816V\).
06

Write the Nernst equation for the cell voltage \(E\)

The Nernst equation relates cell voltage \(E\) to the standard cell potential \(E^{\circ}\), concentrations of the reactants and products, and the temperature: $$ E = E^{\circ} - \frac{RT}{nF} \ln \left(\frac{\prod P_i^{c_i}[\mathrm{P}roducts]}{\prod [\mathrm{R}eactants] A_i^{a_i}}\right) $$ Rearrange this equation for our specific reaction: $$ E = -0.816 - \frac{RT}{10F} \ln\,\left(\frac{P_{\mathrm{NO}}^2[\mathrm{OH}^{-}]^8}{[\mathrm{NO}_3^{-}]^2[\mathrm{S}^{2-}]^3}\right) $$ (b) The Nernst equation for the cell voltage \(E\) is written above.
07

Calculate the cell voltage \(E\) under given conditions

We can now calculate the cell voltage \(E\) using the given conditions and the Nernst equation: (c) Calculate \(E\) under the following conditions: $$ P_{\mathrm{NO}} = 0.994\,\mathrm{atm}, \mathrm{pH} = 13.7, [\mathrm{S}^{2-}]=0.154\,\mathrm{M}, [\mathrm{NO}_{3}^{-}] = 0.472\,\mathrm{M} $$ First, find the concentration of \(\mathrm{OH}^{-}\) from the given pH: \([\mathrm{OH}^{-}] = 10^{-(14-\mathrm{pH})} = 10^{-(14-13.7)} = 10^{-0.3}\) Now, plug these values into the Nernst equation: $$ E = -0.816 - \frac{(8.314)(25 + 273.15)}{10(96485)} \ln \left( \frac{(0.994)^2(10^{-0.3})^8}{(0.472)^2(0.154)^3} \right) $$ Evaluating this expression, we have: $$ E = -0.816 - \frac{(8.314)(298.15)}{10(96485)} \ln \left( 2.82 \times 10^{-2} \right) \approx -0.599\,\mathrm{V} $$ (c) The cell voltage \(E\) under the given conditions is -0.599V.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write balanced net ionic equations for the following reactions in basic medium. (a) \(\mathrm{Ca}(s)+\mathrm{VO}_{4}^{3-}(a q) \longrightarrow \mathrm{Ca}^{2+}(a q)+\mathrm{V}^{2+}(a q)\) (b) \(\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{BiO}_{3}^{-}(a q) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{Bi}^{3+}(a q)\) (c) \(\mathrm{PbO}_{2}(s)+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}(g)+\mathrm{Pb}^{2+}\) (b) \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{Cl}_{2}(g)+\mathrm{I}_{3}^{-}(a q)\)

Given the following data: \(\mathrm{PtCl}_{4}^{2-}(a q)+2 e^{-} \longrightarrow \operatorname{Pt}(s)+4 \mathrm{Cl}^{-}(a q)\) $$ \begin{aligned} & E_{\mathrm{red}}^{\circ} &=0.73 \mathrm{~V} \\ \mathrm{Pt}^{2+}(a q)+2 e^{-} \longrightarrow \operatorname{Pt}(s) & E_{\mathrm{red}}^{\circ} &=1.20 \mathrm{~V} \end{aligned} $$ Find \(K_{\mathrm{f}}\) for \(\mathrm{PtCl}_{4}^{2-}\) at \(25^{\circ} \mathrm{C}\).

Balance the following reactions in acid: (a) \(\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{Ni}^{2+}(a q) \longrightarrow \mathrm{Ni}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}\) (b) \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{Sn}^{2+}(a q) \longrightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{Sn}^{4+}(a q)\)

Balance the following half-equations. Balance (a) and (b) in acidic medium, \((\mathrm{c})\) and \((\mathrm{d})\) in basic medium. (a) \(\mathrm{CH}_{3} \mathrm{OH}(a q) \longrightarrow \mathrm{CO}_{2}(g)\) (b) \(\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NH}_{4}^{+}(a q)\) (c) \(\mathrm{Fe}^{3+}(a q) \longrightarrow \mathrm{Fe}(s)\) (d) \(\mathrm{V}^{2+}(a q) \longrightarrow \mathrm{VO}_{3}^{-}(a q)\)

In biological systems, acetate ion is converted to ethyl alcohol in a two-step process: $$ \begin{array}{r} \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+3 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CHO}(a q)+\mathrm{H}_{2} \mathrm{O} \\\ E^{\circ \prime}=-0.581 \mathrm{~V} \\ \mathrm{CH}_{3} \mathrm{CHO}(a q)+2 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) \\ E^{o \prime}=-0.197 \mathrm{~V} \end{array} $$ \(\left(E^{\circ \prime}\right.\) is the standard reduction voltage at \(25^{\circ} \mathrm{C}\) and \(\mathrm{pH}\) of \(7.00 .)\) (a) Calculate \(\Delta G^{\circ \prime}\) for each step and for the overall conversion. (b) Calculate \(E^{\circ \prime}\) for the overall conversion.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free