Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate \(E^{\circ}\) for the following cells: (a) \(\mathrm{Ag}\left|\mathrm{Ag}^{+} \| \mathrm{Sn}^{4+}, \mathrm{Sn}^{2+}\right| \mathrm{Pt}\) (b) \(\mathrm{Al}\left|\mathrm{Al}^{3+} \| \mathrm{Cu}^{2+}\right| \mathrm{Cu}\) (c) \(\mathrm{Pt}\left|\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+} \| \mathrm{MnO}_{4}^{-}, \mathrm{Mn}^{2+}\right| \mathrm{Pt}\)

Short Answer

Expert verified
Question: Calculate the standard cell potential (E°) for each given cell: (a) Ag+|Ag || Sn4+|Sn2+ (b) Al3+|Al || Cu2+|Cu (c) Fe3+|Fe2+ || MnO4-|Mn2+ Answer: (a) The standard cell potential for the given cell Ag+|Ag || Sn4+|Sn2+ is 0.65 V. (b) The standard cell potential for the given cell Al3+|Al || Cu2+|Cu is 2.00 V. (c) The standard cell potential for the given cell Fe3+|Fe2+ || MnO4-|Mn2+ is 0.74 V.

Step by step solution

01

(a) Identifying the reduction half-cell reactions

First, identify the reduction half-cell reactions for the given cell: \(\mathrm{Ag}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{Ag}\) (reduction in left half-cell) \(\mathrm{Sn}^{4+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}\) (reduction in right half-cell)
02

(a) Finding the standard potentials

Look up the standard reduction potentials for each half-cell reaction: \(\mathrm{Ag}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{Ag}\), \(E^{\circ}_{\mathrm{Ag}^{+}/\mathrm{Ag}} = 0.80 \ \text{V}\) \(\mathrm{Sn}^{4+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}\), \(E^{\circ}_{\mathrm{Sn}^{4+}/\mathrm{Sn}^{2+}} = 0.15 \ \text{V}\)
03

(a) Calculating the cell potential

Use the Nernst equation to calculate the cell potential: \(E^{\circ} = E^{\circ}_{\mathrm{cathode}} - E^{\circ}_{\mathrm{anode}} = E^{\circ}_{\mathrm{Ag}^{+}/\mathrm{Ag}} - E^{\circ}_{\mathrm{Sn}^{4+}/\mathrm{Sn}^{2+}} = 0.80 - 0.15 = 0.65 \ \text{V}\)
04

(b) Identifying the reduction half-cell reactions

First, identify the reduction half-cell reactions for the given cell: \(\mathrm{Al}^{3+} + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}\) (reduction in left half-cell) \(\mathrm{Cu}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}\) (reduction in right half-cell)
05

(b) Finding the standard potentials

Look up the standard reduction potentials for each half-cell reaction: \(\mathrm{Al}^{3+} + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}\), \(E^{\circ}_{\mathrm{Al}^{3+}/\mathrm{Al}} = -1.66 \ \text{V}\) \(\mathrm{Cu}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}\), \(E^{\circ}_{\mathrm{Cu}^{2+}/\mathrm{Cu}} = 0.34 \ \text{V}\)
06

(b) Calculating the cell potential

Use the Nernst equation to calculate the cell potential: \(E^{\circ} = E^{\circ}_{\mathrm{cathode}} - E^{\circ}_{\mathrm{anode}} = E^{\circ}_{\mathrm{Cu}^{2+}/\mathrm{Cu}} - E^{\circ}_{\mathrm{Al}^{3+}/\mathrm{Al}} = 0.34 - (-1.66) = 2.00 \ \text{V}\)
07

(c) Identifying the reduction half-cell reactions

First, identify the reduction half-cell reactions for the given cell: \(\mathrm{Fe}^{3+} + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}\) (reduction in left half-cell) \(\mathrm{MnO}_{4}^{-} + 8\mathrm{H}^{+} + 5\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+} + 4\mathrm{H}_{2}\mathrm{O}\) (reduction in right half-cell)
08

(c) Finding the standard potentials

Look up the standard reduction potentials for each half-cell reaction: \(\mathrm{Fe}^{3+} + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}\), \(E^{\circ}_{\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}} = 0.77 \ \text{V}\) \(\mathrm{MnO}_{4}^{-} + 8\mathrm{H}^{+} + 5\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+} + 4\mathrm{H}_{2}\mathrm{O}\), \(E^{\circ}_{\mathrm{MnO}_{4}^{-}/\mathrm{Mn}^{2+}} = 1.51 \ \text{V}\)
09

(c) Calculating the cell potential

Use the Nernst equation to calculate the cell potential: \(E^{\circ} = E^{\circ}_{\mathrm{cathode}} - E^{\circ}_{\mathrm{anode}} = E^{\circ}_{\mathrm{MnO}_{4}^{-}/\mathrm{Mn}^{2+}} - E^{\circ}_{\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}} = 1.51 - 0.77 = 0.74 \ \text{V}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A metallurgist wants to gold-plate an object with a surface area of 17.21 in \(^{2}\). The gold plating must be 0.00200 in. thick (assume uniform thickness). (a) How many grams of gold \(\left(d=10.5 \mathrm{~g} / \mathrm{cm}^{3}\right)\) are required? (b) How many minutes will it take to plate the object from a solution of AuCN using a current of \(7.00 \mathrm{~A} ?\) Assume \(100 \%\) efficiency.

Which of the following reactions is/are spontaneous at standard conditions? (a) \(\mathrm{Ba}(s)+2 \mathrm{Cr}^{3+}(a q) \longrightarrow 2 \mathrm{Cr}^{2+}(a q)+\mathrm{Ba}^{2+}(a q)\) (b) \(\mathrm{Co}^{2+}(a q)+\mathrm{Cu}(s) \longrightarrow \mathrm{Co}(s)+\mathrm{Cu}^{2+}(a q)\) (c) \(2 \mathrm{~S}(s)+4 \mathrm{OH}^{-}(a q) \longrightarrow\) \(\mathrm{O}_{2}(g)+2 \mathrm{~S}^{2-}(a q)+2 \mathrm{H}_{2} \mathrm{O} \quad\) (basic)

Consider the reaction at \(25^{\circ} \mathrm{C}\) : \(\mathrm{S}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{Ag}(s)+2 \mathrm{Br}^{-}(a q) \longrightarrow 2 \mathrm{AgBr}(s)+\mathrm{H}_{2} \mathrm{~S}(a q)\) At what \(\mathrm{pH}\) is the voltage zero if all the species are at standard conditions?

The standard potential for the reduction of AgSCN is \(0.0895 \mathrm{~V}\) $$\mathrm{AgSCN}(s)+e^{-} \longrightarrow \mathrm{Ag}(s)+\mathrm{SCN}^{-}(a q)$$ Find another electrode potential to use together with the above value and calculate \(K_{\mathrm{sp}}\) for \(\mathrm{AgSCN}\).

Follow the directions in Question 17 for a salt bridge cell in which the anode is a platinum rod immersed in an aqueous solution of sodium iodide containing solid iodine crystals. The cathode is another platinum rod immersed in an aqueous solution of sodium bromide with bromine liquid.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free