Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate \(E^{\circ}\) for the following cells: (a) \(\mathrm{Pb}\left|\mathrm{PbSO}_{4} \| \mathrm{Pb}^{2+}\right| \mathrm{Pb}\) (b) \(\mathrm{Pt}\left|\mathrm{Cl}_{2}\right| \mathrm{ClO}_{3}^{-} \| \mathrm{O}_{2}\left|\mathrm{H}_{2} \mathrm{O}\right| \mathrm{Pt}\) (c) \(\mathrm{Pt}\left|\mathrm{OH}^{-}\right| \mathrm{O}_{2} \| \mathrm{ClO}_{3}^{-}, \mathrm{Cl}^{-} \mid \mathrm{Pt} \quad\) (basic medium)

Short Answer

Expert verified
Question: Calculate the standard cell potential, E°, for the given cell: $\mathrm{Pb}\left|\mathrm{PbSO}_{4} \| \mathrm{Pb}^{2+}\right| \mathrm{Pb}$. Answer: Using the provided steps, we have found \(E^{\circ}_1=0.356\,\mathrm{V}\) and \(E^{\circ}_2=-0.126\,\mathrm{V}\). To calculate the overall E° for the cell, we add the two half-reaction potentials: \(E^{\circ}=0.356\,\mathrm{V} -0.126\,\mathrm{V}=0.230\,\mathrm{V}\). The standard cell potential for the given cell is \(0.230\,\mathrm{V}\).

Step by step solution

01

Identify the half-reactions

First, we should identify the half-reactions involved in the given cell: 1. \(\mathrm{PbSO}_{4 \left(solid \right)} + 2e^{-} \rightarrow \mathrm{Pb}^{2+} + \mathrm{SO}^{2-}_{4}\) 2. \(\mathrm{Pb}^{2+} + 2e^{-} \rightarrow \mathrm{Pb}\)
02

Look for E° values for each half-reaction in a standard reduction potential table

To find the E° values, we must look up the standard reduction potentials for each half-reaction in a table: 1. \(\mathrm{PbSO}_{4 \left(solid \right)} + 2e^{-} \rightarrow \mathrm{Pb}^{2+} + \mathrm{SO}^{2-}_{4}\), \(E^{\circ}_1=0.356\,\mathrm{V}\) (this is the reversal of the given half-reaction, so remember to change the sign) 2. \(\mathrm{Pb}^{2+} + 2e^{-} \rightarrow \mathrm{Pb}\), \(E^{\circ}_2=-0.126\,\mathrm{V}\)
03

Calculate overall E° for the cell

Add the two half-reaction potentials to get the overall cell potential: \(E^{\circ}=E^{\circ}_1+E^{\circ}_2\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the following half-reactions, answer these questions. $$ \begin{aligned} \mathrm{Ce}^{4+}(a q)+e^{-} \longrightarrow \mathrm{Ce}^{3+}(a q) & & E^{\circ}=+1.61 \mathrm{~V} \\ \mathrm{Ag}^{+}(a q)+e^{-} \longrightarrow \mathrm{Ag}(s) & & E^{\circ}=+0.80 \mathrm{~V} \\ \mathrm{Hg}_{2}^{2+}(a q)+2 e^{-} \longrightarrow 2 \mathrm{Hg}(l) & & E^{\circ}=+0.80 \mathrm{~V} \end{aligned} $$ $$ \begin{array}{ll} \mathrm{Sn}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Sn}(s) & E^{\circ}=-0.14 \mathrm{~V} \\ \mathrm{Ni}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Ni}(s) & E^{\circ}=-0.24 \mathrm{~V} \\ \mathrm{Al}^{3+}(a q)+3 e^{-} \longrightarrow \mathrm{Al}(s) & E^{\circ}=-1.68 \mathrm{~V} \end{array} $$ (a) Which is the weakest oxidizing agent? (b) Which is the strongest oxidizing agent? (c) Which is the strongest reducing agent? (d) Which is the weakest reducing agent? (e) Will \(\mathrm{Sn}(s)\) reduce \(\mathrm{Ag}^{+}(a q)\) to \(\mathrm{Ag}(s)\) ? (f) Will \(\mathrm{Hg}(l)\) reduce \(\mathrm{Sn}^{2+}(a q)\) to \(\mathrm{Sn}(s)\) ? (g) Which ion(s) can be reduced by \(\operatorname{Sn}(s)\) ? (h) Which metal(s) can be oxidized by \(\mathrm{Ag}^{+}(a q) ?\)

Consider the following reaction at \(25^{\circ} \mathrm{C}\) : $$ \mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{Cl}^{-}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}_{2}(g) $$ The \(\left[\mathrm{H}^{+}\right]\) is adjusted by adding a buffer that is \(0.125 \mathrm{M}\) in lactic acid (HLac) and \(0.125 \mathrm{M}\) in sodium lactate (NaLac). The pressure of both gases is 1.00 atm and \(\left[\mathrm{Cl}^{-}\right]\) is \(0.200 \mathrm{M}\). \(\left(K_{\mathrm{a}}\right.\) for HLac is \(\left.1.4 \times 10^{-4} .\right)\) Will the cell function as a voltaic cell?

Consider the following species. \(\begin{array}{llll}\mathrm{Cr}^{3+} & \mathrm{Hg}(l) & \mathrm{H}_{2} \text { (acidic) } & \mathrm{Sn}^{2+} & \mathrm{Br}_{2} \text { (acidic) }\end{array}\) Classify each species as oxidizing agent, reducing agent, or both. Arrange the oxidizing agents in order of increasing strength. Do the same for the reducing agents.

An alloy is made up of \(68 \%\) zinc and \(32 \%\) tin. It is prepared by simultaneously electroplating the two metals from a solution containing both \(\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\) and \(\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2} .\) What percent of the total current is used to plate each metal?

Use Table 17.1 to answer the following questions. Use LT (for is less than), GT (for is greater than), EQ (for is equal to), or MI (for more information required). (a) For the half reaction $$ \frac{1}{2} \mathrm{Br}_{2}(l)+e^{-} \longrightarrow \mathrm{Br}^{-}(a q) $$ \(E_{\text {red }}^{\circ}\) ______ \(1.077 \mathrm{~V}\) (b) For the reaction $$ 2 \mathrm{Br}^{-}(a q)+\mathrm{Co}^{2+}(a q) \longrightarrow \operatorname{Br}_{2}(l)+\mathrm{Co}(s) $$ \(E^{\circ}\) _______ 0. (c) If the half reaction $$ \mathrm{Co}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Co}(s) $$ is designated as the new standard where \(E_{\text {red }}^{\circ}\) is 0.00 , then \(E_{\text {red }}^{\circ}\) for \(2 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{H}_{2}(g)\) is ______ 0. (d) For the reaction $$ 2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{Co}(s) \longrightarrow 2 \mathrm{Cr}(s)+3 \mathrm{Co}^{2+}(a q) $$ the number of electrons exchanged is _______ 6. (e) For the reaction described in (d), the number of coulombs that passes through the cell is ______ \(9.648 \times 10^{4}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free