Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Balance the following half-equations. Balance (a) and (b) in acidic medium, \((\mathrm{c})\) and \((\mathrm{d})\) in basic medium. (a) \(\mathrm{CH}_{3} \mathrm{OH}(a q) \longrightarrow \mathrm{CO}_{2}(g)\) (b) \(\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NH}_{4}^{+}(a q)\) (c) \(\mathrm{Fe}^{3+}(a q) \longrightarrow \mathrm{Fe}(s)\) (d) \(\mathrm{V}^{2+}(a q) \longrightarrow \mathrm{VO}_{3}^{-}(a q)\)

Short Answer

Expert verified
Question: Provide the balanced half-equation for the following reactions: (a) CH3OH(aq) ⟶ CO2(g) (Acidic medium) (b) NO3^-(aq) ⟶ NH4^+(aq) (Acidic medium) (c) Fe^3+(aq) ⟶ Fe(s) (Basic medium) (d) V^2+(aq) ⟶ VO3^-(aq) (Basic medium) Answer: (a) CH3OH(aq) + 6H+(aq) + 6e- ⟶ CO2(g) + 6H2O(l) (b) NO3^-(aq) + 10H+(aq) + 8e- ⟶ NH4^+(aq) + 3H2O(l) (c) Fe^3+(aq) + 3e- ⟶ Fe(s) (d) 2V^2+(aq) + 10H2O(l) ⟶ V2O6^2-(aq) + 20OH^-(aq) + 6e-

Step by step solution

01

Balancing Elements other than Hydrogen and Oxygen

For all half-equations, first, we balance the elements other than Hydrogen and Oxygen on both sides. For equation (a), C and O are balanced. For equation (b), N is balanced. For equation (c), Fe is balanced. For equation (d), V is balanced. Now we can move on to balancing Hydrogen and Oxygen.
02

Balancing Oxygen with Water Molecules

We will balance the O atoms by adding H2O molecules to the side that needs more O atoms. For (a): \(\mathrm{CH}_3\mathrm{OH}(aq) \longrightarrow \mathrm{CO}_2(g) + \mathrm{H}_2\mathrm{O}(l)\) For (b): \(\mathrm{NO}_3^-(aq)\) ⟶ \(\mathrm{NH}_4^+(aq) + 3\mathrm{H}_2\mathrm{O}(l)\) For (c) and (d), O atoms are already balanced.
03

Balancing Hydrogen with H+ ions (For acidic medium)

For equations (a) and (b), we will balance the H atoms by adding H+ ions. For (a): \(\mathrm{CH}_3\mathrm{OH}(aq) + 6\mathrm{H}^+(aq) \longrightarrow \mathrm{CO}_2(g) + \mathrm{H}_2\mathrm{O}(l)\) For (b): \(\mathrm{NO}_3^-(aq) + 10\mathrm{H}^+(aq) \longrightarrow \mathrm{NH}_4^+(aq) + 3\mathrm{H}_2\mathrm{O}(l)\)
04

Balancing Hydrogen with H2O and OH- ions (For basic medium)

For equations (c) and (d), we will balance the H atoms by adding H2O to the side needing H atoms and then adding the same amount of OH- ions to the other side. For (c): \(\mathrm{Fe}^{3+}(aq) + 3\mathrm{e}^{-} \longrightarrow \mathrm{Fe}(s)\) (There are no H atoms in this equation; therefore, the equation is already balanced.) For (d): \(\mathrm{V}^{2+}(aq) + 5\mathrm{H}_2\mathrm{O}(l) \longrightarrow \mathrm{VO}_3^-(aq) + 10\mathrm{OH}^-(aq)\)
05

Balancing the Charge with Electrons

We will balance the charge on both sides of the equation by adding electrons (e-). For (a): \(\mathrm{CH}_3\mathrm{OH}(aq) + 6\mathrm{H}^+(aq) + 6\mathrm{e}^{-} \longrightarrow \mathrm{CO}_2(g) + 6\mathrm{H}_2\mathrm{O}(l)\) For (b): \(\mathrm{NO}_3^-(aq) + 10\mathrm{H}^+(aq) + 8\mathrm{e}^{-} \longrightarrow \mathrm{NH}_4^+(aq) + 3\mathrm{H}_2\mathrm{O}(l)\) For (c): Equation (c) is already balanced in terms of charge, and there is no need for adding electrons. For (d): 2\(\mathrm{V}^{2+}(aq) + 10\mathrm{H}_2\mathrm{O}(l) \longrightarrow \mathrm{V}_2\mathrm{O}_6^{2-}(aq) + 20\mathrm{OH}^-(aq) + 6\mathrm{e}^{-}\) So, the balanced half-equations are: (a) \(\mathrm{CH}_3\mathrm{OH}(aq) + 6\mathrm{H}^+(aq) + 6\mathrm{e}^{-} \longrightarrow \mathrm{CO}_2(g) + 6\mathrm{H}_2\mathrm{O}(l)\) (b) \(\mathrm{NO}_3^-(aq) + 10\mathrm{H}^+(aq) + 8\mathrm{e}^{-} \longrightarrow \mathrm{NH}_4^+(aq) + 3\mathrm{H}_2\mathrm{O}(l)\) (c) \(\mathrm{Fe}^{3+}(aq) + 3\mathrm{e}^{-} \longrightarrow \mathrm{Fe}(s)\) (d) 2\(\mathrm{V}^{2+}(aq) + 10\mathrm{H}_2\mathrm{O}(l) \longrightarrow \mathrm{V}_2\mathrm{O}_6^{2-}(aq) + 20\mathrm{OH}^-(aq) + 6\mathrm{e}^{-}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An alloy is made up of \(68 \%\) zinc and \(32 \%\) tin. It is prepared by simultaneously electroplating the two metals from a solution containing both \(\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\) and \(\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2} .\) What percent of the total current is used to plate each metal?

In biological systems, acetate ion is converted to ethyl alcohol in a two-step process: $$ \begin{array}{r} \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+3 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CHO}(a q)+\mathrm{H}_{2} \mathrm{O} \\\ E^{\circ \prime}=-0.581 \mathrm{~V} \\ \mathrm{CH}_{3} \mathrm{CHO}(a q)+2 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) \\ E^{o \prime}=-0.197 \mathrm{~V} \end{array} $$ \(\left(E^{\circ \prime}\right.\) is the standard reduction voltage at \(25^{\circ} \mathrm{C}\) and \(\mathrm{pH}\) of \(7.00 .)\) (a) Calculate \(\Delta G^{\circ \prime}\) for each step and for the overall conversion. (b) Calculate \(E^{\circ \prime}\) for the overall conversion.

Consider the reaction $$ 2 \mathrm{Cu}^{2+}(a q)+\mathrm{Sn}^{2+}(a q) \longrightarrow \mathrm{Sn}^{4+}(a q)+2 \mathrm{Cu}^{+}(a q) $$ At what concentration of \(\mathrm{Cu}^{2+}\) is the voltage zero, if all other species are at \(0.200 \mathrm{M?}\)

Balance the following reactions in acid: (a) \(\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{Ni}^{2+}(a q) \longrightarrow \mathrm{Ni}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}\) (b) \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{Sn}^{2+}(a q) \longrightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{Sn}^{4+}(a q)\)

Consider the following standard reduction potentials: $$ \begin{aligned} \mathrm{Tl}^{+}(a q)+e^{-} \longrightarrow \mathrm{Tl}(s) & & E_{\mathrm{red}}^{\circ}=-0.34 \mathrm{~V} \\ \mathrm{Tl}^{3+}(a q)+3 e^{-} \longrightarrow \mathrm{Tl}(s) & & E_{\mathrm{red}}^{\circ}=0.74 \mathrm{~V} \\ \mathrm{Tl}^{3+}(a q)+2 e^{-} \longrightarrow \mathrm{Tl}^{+}(a q) & E_{\mathrm{red}}^{\circ} &=1.28 \mathrm{~V} \end{aligned} $$ and the following abbreviated cell notations: $$ \begin{array}{l} \text { (1) } \mathrm{Tl}\left|\mathrm{Tl}^{+} \| \mathrm{Tl}^{3+}, \mathrm{Tl}^{+}\right| \mathrm{Pt} \\ \text { (2) } \mathrm{Tl}\left|\mathrm{Tl}^{3+} \| \mathrm{Tl}^{3+}, \mathrm{Tl}^{+}\right| \mathrm{Pt} \\ \text { (3) } \mathrm{Tl}\left|\mathrm{Tl}^{+} \| \mathrm{Tl}^{3+}\right| \mathrm{Tl} \end{array} $$ (a) Write the overall equation for each cell. (b) Calculate \(E^{\circ}\) for each cell. (c) Calculate \(\Delta G^{\circ}\) for each overall equation. (d) Comment on whether \(\Delta G^{\circ}\) and/or \(E^{\circ}\) are state properties. (Hint: A state property is path-independent.)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free