Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write a balanced net ionic equation for the overall cell reaction represented by (a) \(\mathrm{Cd}\left|\mathrm{Cd}^{2+} \| \mathrm{Sb}^{3+}\right| \mathrm{Sb}\) (b) \(\mathrm{Pt}\left|\mathrm{Cu}^{+}, \mathrm{Cu}^{2+} \| \mathrm{Mg}^{2+}\right| \mathrm{Mg}\) (c) \(\mathrm{Pt}\left|\mathrm{Cr}^{3+}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \| \mathrm{ClO}_{3}^{-}, \mathrm{Cl}^{-}\right| \mathrm{Pt} \quad\) (acid)

Short Answer

Expert verified
Question: Write the balanced net ionic equation for the overall cell reaction for the following galvanic cells: (a) \(\mathrm{Cd}\left|\mathrm{Cd}^{2+} \| \mathrm{Sb}^{3+}\right| \mathrm{Sb}\) Answer: 3Cd + 2\(\mathrm{Sb}^{3+}\) \(\rightarrow\) 3\(\mathrm{Cd}^{2+}\) + 2Sb (b) \(\mathrm{Pt}\left|\mathrm{Cu}^{+}, \mathrm{Cu}^{2+} \|\mathrm{Mg}^{2+}\right| \mathrm{Mg}\) Answer: Cu + 2\(\mathrm{Mg}^{2+}\) \(\rightarrow\) \(\mathrm{Cu}^{+}\) + 2Mg (c) Acid \(\mathrm{Pt}\left|\mathrm{Cr}^{3+}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \|\mathrm{ClO}_{3}^{-}, \mathrm{Cl}^{-}\right| \mathrm{Pt}\) Answer: Cr + 6H\(^+\) + \(\mathrm{ClO}_{3}^{-}\) \(\rightarrow\) \(\mathrm{CrO}_{4}^{2-}\) + 3H\(_{2}\)O + \(\mathrm{Cl}^{-}\)

Step by step solution

01

Identify half-reactions

At the anode (left side), the half-reaction is oxidation, where Cd will be converted to \(\mathrm{Cd}^{2+}\). At the cathode (right side), the half-reaction is reduction, where \(\mathrm{Sb}^{3+}\) will be converted to Sb.
02

Balance each half-reaction

Oxidation half-reaction: Cd \(\rightarrow\) \(\mathrm{Cd}^{2+}\) + 2e\(^-\) Reduction half-reaction: \(\mathrm{Sb}^{3+}\) + 3e\(^-\) \(\rightarrow\) Sb
03

Combine balanced half-reactions into the net ionic equation

In order to add the two balanced half-reactions together, we need to make sure they have the same number of electrons so that they cancel each other out. Multiply the oxidation half-reaction by 3 and the reduction half-reaction by 2 and then add them: 3Cd \(\rightarrow\) 3\(\mathrm{Cd}^{2+}\) + 6e\(^-\) 2(\(\mathrm{Sb}^{3+}\) + 3e\(^-\) \(\rightarrow\) Sb) Overall reaction: 3Cd + 6e\(^-\) + 2\(\mathrm{Sb}^{3+}\) \(\rightarrow\) 3\(\mathrm{Cd}^{2+}\) + 6e\(^-\) + 2Sb Finally, cancel out the electrons to get the balanced net ionic equation: 3Cd + 2\(\mathrm{Sb}^{3+}\) \(\rightarrow\) 3\(\mathrm{Cd}^{2+}\) + 2Sb (b) \(\mathrm{Pt}\left|\mathrm{Cu}^{+}, \mathrm{Cu}^{2+} \|\mathrm{Mg}^{2+}\right| \mathrm{Mg}\)
04

Identify half-reactions

At the anode (left side), there are two oxidation half-reactions: one for \(\mathrm{Cu}^{+}\)-to-\(\mathrm{Cu}^{2+}\), and the other for \(\mathrm{Cu}\)-to-\(\mathrm{Cu}^{+}\). The \(\mathrm{Cu}\)-to-\(\mathrm{Cu}^{+}\) half-reaction will occur because its standard reduction potential is more positive than the \(\mathrm{Cu}^{+}\)-to-\(\mathrm{Cu}^{2+}\). At the cathode (right side), the reduction half-reaction is where \(\mathrm{Mg}^{2+}\) will be converted to Mg.
05

Balance each half-reaction

Oxidation half-reaction: Cu \(\rightarrow\) \(\mathrm{Cu}^{+}\) + e\(^-\) Reduction half-reaction: \(\mathrm{Mg}^{2+}\) + 2e\(^-\) \(\rightarrow\) Mg
06

Combine balanced half-reactions into the net ionic equation

Multiply the reduction half-reaction by 2 and add the half-reactions: Cu \(\rightarrow\) \(\mathrm{Cu}^{+}\) + e\(^-\) 2(\(\mathrm{Mg}^{2+}\) + 2e\(^-\) \(\rightarrow\) Mg) Overall reaction: Cu + 2e\(^-\) + 2\(\mathrm{Mg}^{2+}\) \(\rightarrow\) \(\mathrm{Cu}^{+}\) + 2e\(^-\) + 2Mg Cancel out the electrons to get the balanced net ionic equation: Cu + 2\(\mathrm{Mg}^{2+}\) \(\rightarrow\) \(\mathrm{Cu}^{+}\) + 2Mg (c) Acid \(\mathrm{Pt}\left|\mathrm{Cr}^{3+}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \|\mathrm{ClO}_{3}^{-}, \mathrm{Cl}^{-}\right| \mathrm{Pt}\)
07

Identify half-reactions

At the anode (left side), there are two oxidation half-reactions: one for \(\mathrm{Cr}^{3+}\)-to-\((\mathrm{Cr}_{2} \mathrm{O}_{7})^{2-}\), and the other for \(\mathrm{Cr}\)-to-\(\mathrm{Cr}_{2} \mathrm{O}_{7}^{-}\). The latter will occur as its standard reduction potential is more positive than the former. At the cathode (right side), the reduction half-reaction is where \(\mathrm{ClO}_{3}^{-}\) will be converted to Cl\(^-\) in an acidic solution.
08

Balance each half-reaction

Oxidation half-reaction (acidic condition): Cr \(\rightarrow\) \(\mathrm{CrO}_{4}^{2-}\) + 3H\(_{2}\)O + 6e$$^-$ Reduction half-reaction (acidic condition): 6e\(^-\) + 6H\(^+\) + \(\mathrm{Cl} \mathrm{O}_{3}^{-} \rightarrow\) 3H\(_{2}\)O + \(\mathrm{Cl}^{-}\)
09

Combine balanced half-reactions into the net ionic equation

Add the balanced half-reactions together: Cr + 6e\(^-\) \(\rightarrow\) \(\mathrm{CrO}_{4}^{2-}\) + 3H\(_{2}\)O + 6e$$^-$ 6e\(^-\) + 6H\(^+\) + \(\mathrm{ClO}_{3}^{-}\) \(\rightarrow\) 3H\(_{2}\)O + \(\mathrm{Cl}^{-}\) Overall reaction: Cr + 6H\(^+\) + \(\mathrm{ClO}_{3}^{-}\) \(\rightarrow\) \(\mathrm{CrO}_{4}^{2-}\) + 6H\(_{2}\)O + 6e$$^-\( + 6e\)^-\( + \)\mathrm{Cl}^{-}$ Cancel out the electrons to get the balanced net ionic equation: Cr + 6H\(^+\) + \(\mathrm{ClO}_{3}^{-}\) \(\rightarrow\) \(\mathrm{CrO}_{4}^{2-}\) + 3H\(_{2}\)O + \(\mathrm{Cl}^{-}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the electrolysis of \(\mathrm{NiCl}_{2}\) to \(\mathrm{Ni}(s)\) and \(\mathrm{Cl}_{2}(g)\). (a) What is the minimum voltage required to carry out this reaction at standard conditions? (b) If a voltage of \(3.0 \mathrm{~V}\) is actually used, and \(10.00 \mathrm{~kJ}\) of energy are consumed, how many grams of \(\mathrm{Ni}(s)\) are obtained? \((1 \mathrm{~J}=1\) volt-coulomb)

The standard potential for the reduction of AgSCN is \(0.0895 \mathrm{~V}\) $$\mathrm{AgSCN}(s)+e^{-} \longrightarrow \mathrm{Ag}(s)+\mathrm{SCN}^{-}(a q)$$ Find another electrode potential to use together with the above value and calculate \(K_{\mathrm{sp}}\) for \(\mathrm{AgSCN}\).

Consider a cell in which the reaction is $$ \mathrm{Pb}(s)+2 \mathrm{H}^{+}(a q) \longrightarrow \mathrm{Pb}^{2+}(a q)+\mathrm{H}_{2}(g) $$ (a) Calculate \(E^{\circ}\) for this cell. (b) Chloride ions are added to the \(\mathrm{Pb} \mid \mathrm{Pb}^{2+}\) half- cell to precipitate \(\mathrm{PbCl}_{2}\). The voltage is measured to be $$ \begin{array}{l} +0.210 \mathrm{~V} \text { . Taking }\left[\mathrm{H}^{+}\right]=1.0 \mathrm{M} \text { and } P_{\mathrm{H}_{2}}=1.0 \mathrm{~atm}, \text { cal- } \\\ \text { culate }\left[\mathrm{Pb}^{2+}\right] . \end{array} $$ (c) Taking [Cl ^ ] in (b) to be 0.10 M, calculate \(K_{\text {sp }}\) of \(\mathrm{PbCl}_{2}\).

For the following half-reactions, answer these questions. $$ \begin{aligned} \mathrm{Ce}^{4+}(a q)+e^{-} \longrightarrow \mathrm{Ce}^{3+}(a q) & & E^{\circ}=+1.61 \mathrm{~V} \\ \mathrm{Ag}^{+}(a q)+e^{-} \longrightarrow \mathrm{Ag}(s) & & E^{\circ}=+0.80 \mathrm{~V} \\ \mathrm{Hg}_{2}^{2+}(a q)+2 e^{-} \longrightarrow 2 \mathrm{Hg}(l) & & E^{\circ}=+0.80 \mathrm{~V} \end{aligned} $$ $$ \begin{array}{ll} \mathrm{Sn}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Sn}(s) & E^{\circ}=-0.14 \mathrm{~V} \\ \mathrm{Ni}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Ni}(s) & E^{\circ}=-0.24 \mathrm{~V} \\ \mathrm{Al}^{3+}(a q)+3 e^{-} \longrightarrow \mathrm{Al}(s) & E^{\circ}=-1.68 \mathrm{~V} \end{array} $$ (a) Which is the weakest oxidizing agent? (b) Which is the strongest oxidizing agent? (c) Which is the strongest reducing agent? (d) Which is the weakest reducing agent? (e) Will \(\mathrm{Sn}(s)\) reduce \(\mathrm{Ag}^{+}(a q)\) to \(\mathrm{Ag}(s)\) ? (f) Will \(\mathrm{Hg}(l)\) reduce \(\mathrm{Sn}^{2+}(a q)\) to \(\mathrm{Sn}(s)\) ? (g) Which ion(s) can be reduced by \(\operatorname{Sn}(s)\) ? (h) Which metal(s) can be oxidized by \(\mathrm{Ag}^{+}(a q) ?\)

Write balanced equations for the following reactions in basic solution. (a) \(\mathrm{SO}_{2}(g)+\mathrm{I}_{2}(a q) \longrightarrow \mathrm{SO}_{3}(g)+\mathrm{I}^{-}(a q)\) (b) \(\mathrm{Zn}(s)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NH}_{3}(a q)+\mathrm{Zn}^{2+}(a q)\) (c) \(\mathrm{ClO}^{-}(a q)+\mathrm{CrO}_{2}^{-}(a q) \longrightarrow \mathrm{Cl}^{-}(a q)+\mathrm{CrO}_{4}^{2-}(a q)\) (d) \(\mathrm{K}(s)+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{K}^{+}(a q)+\mathrm{H}_{2}(g)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free