Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given the following standard free energies at \(25^{\circ} \mathrm{C}\), $$ \begin{aligned} \mathrm{SO}_{2}(g)+3 \mathrm{CO}(g) \longrightarrow \operatorname{COS}(g)+2 \mathrm{CO}_{2}(g) & \Delta G^{\circ}=-246.5 \mathrm{~kJ} \\ \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) & \Delta G^{\circ}=-28.5 \mathrm{~kJ} \end{aligned} $$ find \(\Delta G^{\circ}\) at \(25^{\circ} \mathrm{C}\) for the following reaction. $$ \mathrm{SO}_{2}(g)+\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{COS}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) $$

Short Answer

Expert verified
Question: What is the standard free energy for the reaction of SO₂(g) + CO(g) + 2H₂(g) → COS(g) + 2H₂O(g) at 25°C, given the following reactions and their standard free energies: 1) SO₂(g) + 3CO(g) → COS(g) + 2CO₂(g) ΔG° = -246.5 kJ 2) CO(g) + H₂O(g) → CO₂(g) + H₂(g) ΔG° = -28.5kJ Answer: The standard free energy for the desired reaction at 25°C is -189.5 kJ.

Step by step solution

01

Identify the desired reaction and given reactions

Recall that the desired reaction is: $$ \mathrm{SO}_{2}(g)+\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{COS}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) $$ The given reactions that we have are: $$ \begin{aligned} \mathrm{SO}_{2}(g)+3 \mathrm{CO}(g) \longrightarrow \operatorname{COS}(g)+2 \mathrm{CO}_{2}(g) & \Delta G^{\circ}=-246.5 \mathrm{~kJ} \\ \\ \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) & \Delta G^{\circ}=-28.5 \mathrm{~kJ} \end{aligned} $$
02

Manipulate the given reactions to match the desired reaction

In order to form the desired reaction, we need to have \(\mathrm{H}_{2} \mathrm{O}(g)\) on the products side instead of the reactants side. To achieve this, we can reverse the second given reaction while changing the sign of its \(\Delta G^{\circ}\): $$ \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \longrightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \hspace{1cm} \Delta G^{\circ}=28.5 \mathrm{~kJ} $$ Now, we need 2 moles of \(\mathrm{H}_{2}O(g)\) in the products side, so we multiply the new second reaction by 2: $$ 2(\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)) \longrightarrow 2(\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)) \hspace{1cm} 2\Delta G^{\circ}=2(28.5 \mathrm{~kJ}) = 57 \mathrm{~kJ} $$
03

Add the manipulated reactions to obtain the desired reaction

Now we can add the first given reaction (unmodified) to the modified second reaction: $$ \begin{aligned} &\mathrm{SO}_{2}(g)+3 \mathrm{CO}(g) \longrightarrow \operatorname{COS}(g)+2 \mathrm{CO}_{2}(g) & \Delta G^{\circ}=-246.5 \mathrm{~kJ} \\ + \hspace{0.5cm} &2(\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)) \longrightarrow 2(\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)) & 2\Delta G^{\circ}=57 \mathrm{~kJ}\\ \hline &\mathrm{SO}_{2}(g)+\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{COS}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) & \Delta G^{\circ}=\Delta G^{\circ}_{1} + 2\Delta G^{\circ}_{2} \end{aligned} $$
04

Calculate the standard free energy for the desired reaction

Finally, we can calculate the standard free energy for our desired reaction by adding the values of the previously obtained reactions: $$ \Delta G^{\circ} = \Delta G^{\circ}_{1} + 2\Delta G^{\circ}_{2} = -246.5 \mathrm{~kJ} + 57 \mathrm{~kJ} = -189.5 \mathrm{~kJ} $$ Therefore, the standard free energy for the desired reaction at 25°C is -189.5 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The reaction between magnesium metal and water \((l)\) produces solid magnesium hydroxide and hydrogen gas. Calculate \(\Delta G^{\circ}\) for the formation of one mole of \(\mathrm{Mg}(\mathrm{OH})_{2}\) at $$ 27^{\circ} \mathrm{C} \text { and at } 39^{\circ} \mathrm{C} $$

Calculate \(\Delta G^{\circ}\) at \(82^{\circ} \mathrm{C}\) for reactions in which (a) \(\Delta H^{\circ}=293 \mathrm{~kJ} ; \quad \Delta S^{\circ}=-695 \mathrm{~J} / \mathrm{K}\) (b) \(\Delta H^{\circ}=-1137 \mathrm{~kJ} ; \quad \Delta S^{\circ}=0.496 \mathrm{~kJ} / \mathrm{K}\) (c) \(\Delta H^{\circ}=-86.6 \mathrm{~kJ} ; \quad \Delta S^{\circ}=-382 \mathrm{~J} / \mathrm{K}\)

Discuss the effect of temperature on the spontaneity of reactions with the following values for \(\Delta H^{\circ}\) and \(\Delta S^{\circ} .\) $$ \begin{array}{l} \text { (a) } \Delta H^{\circ}=128 \mathrm{~kJ} ; \Delta S^{\circ}=89.5 \mathrm{~J} / \mathrm{K} \\ \text { (b) } \Delta H^{\circ}=-20.4 \mathrm{~kJ} ; \Delta S^{\circ}=-156.3 \mathrm{~J} / \mathrm{K} \end{array} $$ (c) \(\Delta H^{\circ}=-127 \mathrm{~kJ} ; \Delta S^{\circ}=43.2 \mathrm{~J} / \mathrm{K}\)

For the decomposition of \(\mathrm{Ag}_{2} \mathrm{O}\) : $$ 2 \mathrm{Ag}_{2} \mathrm{O}(s) \longrightarrow 4 \mathrm{Ag}(s)+\mathrm{O}_{2}(g) $$ (a) Obtain an expression for \(\Delta G^{\circ}\) as a function of temperature. Prepare a table of \(\Delta G^{\circ}\) values at \(100 \mathrm{~K}\) intervals between \(100 \mathrm{~K}\) and \(500 \mathrm{~K}\). (b) Calculate the temperature at which \(\Delta G^{\circ}=0\).

On the basis of your experience, predict which of the following reactions are spontaneous. (a) \(\mathrm{CO}_{2}(s) \longrightarrow \mathrm{CO}_{2}(g)\) at \(25^{\circ} \mathrm{C}\) (b) \(\mathrm{NaCl}(s) \longrightarrow \mathrm{NaCl}(l)\) at \(25^{\circ} \mathrm{C}\) (c) \(2 \mathrm{NaCl}(s) \longrightarrow 2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g)\) (d) \(\mathrm{CO}_{2}(g) \longrightarrow \mathrm{C}(s)+\mathrm{O}_{2}(g)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free