Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the molar solubility of \(\mathrm{PbCl}_{2}\) in \(0.2 \mathrm{M} \mathrm{NaOH}\). The complex formed is \(\mathrm{Pb}(\mathrm{OH})_{3}^{-}\left(K_{\mathrm{f}}=3.8 \times 10^{14}\right) .\) Ignore any other competing equilibria.

Short Answer

Expert verified
Answer: The molar solubility of PbCl2 in a 0.2 M NaOH solution is 2.13 x 10^-5 M.

Step by step solution

01

Write the balanced chemical equations

First, let's write down the balanced chemical equations for the dissociation of \(\mathrm{PbCl}_{2}\) and the reaction forming the complex ion \(\mathrm{Pb(OH)}_{3}^{-}\): (1) \(\mathrm{PbCl}_{2}(s) \longleftrightarrow \mathrm{Pb^{2+}}(aq) + 2\mathrm{Cl^{-}}(aq)\) (2) \(\mathrm{Pb^{2+}}(aq) + 3\mathrm{OH^{-}}(aq) \longleftrightarrow \mathrm{Pb(OH)}_{3}^{-}\)
02

Set up the expressions for \(K_\mathrm{sp}\) and \(K_{\mathrm{f}}\)

We need to set up the expressions for the solubility product constant, \(K_\mathrm{sp}\), for the dissociation of \(\mathrm{PbCl}_{2}\) (Equation 1) and the formation constant, \(K_{\mathrm{f}}\), for the formation of \(\mathrm{Pb(OH)}_{3}^{-}\) (Equation 2): \(K_\mathrm{sp} = [\mathrm{Pb^{2+}}][\mathrm{Cl^{-}}]^2\) \(K_{\mathrm{f}} = \frac{[\mathrm{Pb(OH)}_{3}]}{[\mathrm{Pb^{2+}}][\mathrm{OH^{-}}]^3} = 3.8 \times 10^{14}\)
03

Calculate the concentration of \(\mathrm{OH^{-}}\)

Since we know that the initial concentration of \(\mathrm{NaOH}\) is \(0.2 \mathrm{M}\), the concentration of \(\mathrm{OH^{-}}\) ions in the solution can be calculated as: \([\mathrm{OH^{-}}] = [\mathrm{NaOH}] = 0.2\mathrm{M}\)
04

Calculate the concentration of \(\mathrm{Pb(OH)}_{3}^{-}\) using \(K_{\mathrm{f}}\)

We can rearrange the expression for \(K_{\mathrm{f}}\) to determine the concentration of \(\mathrm{Pb(OH)}_{3}^{-}\), given \([\mathrm{OH^{-}}] = 0.2\mathrm{M}\) and \(K_{\mathrm{f}} = 3.8 \times 10^{14}\): \([\mathrm{Pb(OH)}_{3}] = K_{\mathrm{f}}\times[\mathrm{Pb^{2+}}][\mathrm{OH^{-}}]^3\) \([\mathrm{Pb(OH)}_{3}] = (3.8 \times 10^{14}) \times [\mathrm{Pb^{2+}}] (0.2)^3\) \([\mathrm{Pb(OH)}_{3}] = (3.8 \times 10^{14}) \times [\mathrm{Pb^{2+}}] (0.008)\)
05

Relate \([\mathrm{Pb(OH)}_{3}^{-}]\) and \([\mathrm{Pb^{2+}}]\) using \(K_\mathrm{sp}\)

Since \([\mathrm{Pb(OH)}_{3}^{-}] = [\mathrm{Pb^{2+}}]\) and \([\mathrm{Cl^{-}}] = 2[\mathrm{Pb^{2+}}]\), the expression for \(K_\mathrm{sp}\) can be rewritten as: \(K_\mathrm{sp} = [\mathrm{Pb^{2+}}](2[\mathrm{Pb^{2+}}])^2 = 4[\mathrm{Pb^{2+}}]^3\) Now, we can use this equation to relate the concentration of \(\mathrm{Pb(OH)}_{3}^{-}\) and \(\mathrm{Pb^{2+}}\): \(\frac{[\mathrm{Pb(OH)}_{3}^{-}]}{4} = [\mathrm{Pb^{2+}}]^3\)
06

Solve for \([\mathrm{Pb^{2+}}]\) and calculate molar solubility

Substituting the expression for \([\mathrm{Pb(OH)}_{3}^{-}]\) from Step 4 and solving for \([\mathrm{Pb^{2+}}]\): \(\frac{(3.8 \times 10^{14})\times [\mathrm{Pb^{2+}}](0.008)}{4} = [\mathrm{Pb^{2+}}]^3\) \(\frac{(3.8 \times 10^{14})(0.008)}{4} = \frac{[\mathrm{Pb^{2+}}]^4}{[\mathrm{Pb^{2+}}]}\) \([\mathrm{Pb^{2+}}] = \sqrt[3]{\frac{(3.8 \times 10^{14})(0.008)}{4}} = 2.13 \times 10^{-5} \mathrm{M}\) Since the molar solubility of \(\mathrm{PbCl}_{2}\) is equal to the concentration of \(\mathrm{Pb^{2+}}\), we can conclude that the molar solubility of \(\mathrm{PbCl}_{2}\) in \(0.2 \mathrm{M} \mathrm{NaOH}\) is: \(2.13 \times 10^{-5} \mathrm{M}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Silver(I) sulfate \(\left(K_{\mathrm{sp}}=1.2 \times 10^{-5}\right)\) is used in the electroplating of silver. A 1.0 - \(\mathrm{L}\) solution is prepared by mixing \(15 \mathrm{~g}\) of silver nitrate with \(20 \mathrm{~g}\) (2 significant figures) of potassium sulfate. Will a precipitate form? At what \(\left[\mathrm{Ag}^{+}\right]\) concentration will precipitation (if any) start?

A town adds 2.0 ppm of \(\mathrm{F}^{-}\) ion to fluoridate its water supply. (Fluoridation of water reduces the incidence of dental caries). If the concentration of \(\mathrm{Ca}^{2+}\) in the water is \(3.5 \times 10^{-4} \mathrm{M}\), will a precipitate of \(\mathrm{CaF}_{2}\) form when the water is fluoridated?

For the reaction \(\mathrm{CdC}_{2} \mathrm{O}_{4}(s)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)\) (a) calculate \(K .\left(K_{\mathrm{sp}}\right.\) for \(\mathrm{CdC}_{2} \mathrm{O}_{4}\) is \(\left.1.5 \times 10^{-8} .\right)\) (b) calculate \(\left[\mathrm{NH}_{3}\right]\) at equilibrium when \(2.00 \mathrm{~g}\) of \(\mathrm{CdC}_{2} \mathrm{O}_{4}\) are dissolved in \(1.00 \mathrm{~L}\) of solution.

Write a net ionic equation for the reaction with aqueous \(\mathrm{NH}_{3}\) in which (a) \(\mathrm{Pt}^{2+}\) forms a complex ion. (b) \(\mathrm{Ag}^{+}\) forms a precipitate. (c) \(\mathrm{Ni}(\mathrm{OH})_{3}\) dissolves.

Calcium nitrate is added to a sodium sulfate solution that is \(0.0150 \mathrm{M}\) (a) At what concentration of \(\mathrm{Ca}^{2+}\) does a precipitate first start to form? (b) Enough \(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\) is added to make \(\left[\mathrm{Ca}^{2+}\right]=0.0075 \mathrm{M}\). What percentage of the original sulfate ion has precipitated?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free