Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Phthalic acid, \(\mathrm{H}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\), is a diprotic acid. It is used to make phenolphthalein indicator. \(K_{\mathrm{a} 1}=0.0012\), and \(K_{\mathrm{a} 2}=3.9 \times 10^{-6} .\) Calculate the \(\mathrm{pH}\) of a \(2.9 \mathrm{M}\) solution of phthalic acid. Estimate \(\left[\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}\right]\) and \(\left[\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-}\right] .\)

Short Answer

Expert verified
The pH of the 2.9 M solution of phthalic acid is approximately 1.49. The estimated concentrations for both conjugate bases, HC₈H₄O₄⁻ and C₈H₄O₄²⁻, are approximately 0.102 M and 1.26 x 10⁻⁵ M, respectively.

Step by step solution

01

Determine the ionization steps

Given that phthalic acid (\(\mathrm{H}_{2}\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}\)) is a diprotic acid, it ionizes in two steps: 1. For \(K_{a1}\): \(\mathrm{H}_{2}\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+} + \mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}\) 2. For \(K_{a2}\): \(\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-} \rightleftharpoons \mathrm{H}^{+} + \mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{2-}\)
02

Calculate the number of moles for the ionization steps

Ignore the second ionization step initially, because the first ionization will have more impact on the concentration of \(\mathrm{H}^{+}\) ions in solution. We set up the equilibrium expression for the first ionization step: \(K_{a1}=(5.6 \times 10^{-13})=\dfrac{[ \mathrm{H}^{+}] [\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}]}{[\mathrm{H}_{2}\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}]}\) \([\mathrm{H}^{+}]\) = x, \([\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}]\) = x, \([\mathrm{H}_{2}\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}]\)= 2.9 - x
03

Solve for the concentration of \(\mathrm{H}^+\) ions

Plug in the variables into the equilibrium expression and solve for x: \(0.0012=\dfrac{x \cdot x}{2.9 - x}\) Since \(K_{a1}\) is very small, we can assume that \(x \ll 2.9\). Therefore, we can simplify the equation and solve for x: \(0.0012=\dfrac{x^{2}}{2.9}\) \(x = \sqrt{0.0012 * 2.9} \approx 0.032\) We assume that x is the concentration of \(\mathrm{H}^+\) in the solution, which is approximately \(0.032\).
04

Calculate the pH of the solution

We use the pH formula to calculate the pH of the solution: \(\mathrm{pH} = -\log\left[\mathrm{H}^{+}\right]\) \(\mathrm{pH} = -\log\left(0.032\right) \approx 1.49\) Hence, the pH of the 2.9 M solution of phthalic acid is approximately 1.49.
05

Estimate the concentration of both conjugate bases

Now that we have the concentration of \(\mathrm{H}^{+}\) ions, we can use the ionization equilibrium expressions to estimate the concentrations of \(\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}\) and \(\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{2-}\): 1. \(\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}: K_{a1}=\dfrac{[\mathrm{H}^{+}] [\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}]}{[\mathrm{H}_{2}\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}]}\) Rearrange the equation: \([\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}]=\dfrac{K_{a1} [\mathrm{H}_{2}\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}]}{[\mathrm{H}^{+}]}\) Plug in the values from the question: \([\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}]=\dfrac{0.0012 \times (2.9 - 0.032)}{0.032} \approx 0.102\) 2. \(\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{2-}: K_{a2}=\dfrac{[\mathrm{H}^{+}] [\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{2-}]}{[\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}]}\) Rearrange the equation: \([\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{2-}]=\dfrac{K_{a2} [\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}]}{[\mathrm{H}^{+}]}\) Plug in the found values for the conjugate base: \([\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{2-}] =\dfrac{3.9 \times 10^{-6} \times 0.102}{0.032} \approx 1.26 \times 10^{-5}\) So, the estimated concentrations for \(\mathrm{HC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{-}\) and \(\mathrm{C}_{8}\mathrm{H}_{4}\mathrm{O}_{4}^{2-}\) are approximately \(0.102 \mathrm{M}\) and \(1.26 \times 10^{-5} \mathrm{M}\), respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider an aqueous solution of a weak base, NaB \((\mathrm{MM}=233 \mathrm{~g} / \mathrm{mol})\). It has a pH of 10.54 . The freezing point of the solution is \(-0.89^{\circ} \mathrm{C}\) and its density is \(1.00 \mathrm{~g} / \mathrm{mol}\). Find \(K_{\mathrm{b}}\) for the weak base \(\mathrm{B}^{-}\).

Consider these acids $$ \begin{array}{ccccc} \hline \text { Acid } & \text { A } & \text { B } & \text { C } & \text { D } \\\ \text { pK }_{\text {a }} & 3.7 & 9.2 & 7.4 & 1.6 \\ \hline \end{array} $$ (a) Arrange the acids in order of decreasing acid strength from strongest to weakest. (b) Which acid has the largest \(K_{\mathrm{a}}\) value?

Consider the following six beakers. All have \(100 \mathrm{~mL}\) of aqueous \(0.1 \mathrm{M}\) solutions of the following compounds: beaker \(\mathrm{A}\) has \(\mathrm{HI}\) beaker \(\mathrm{B}\) has \(\mathrm{HNO}_{2}\) beaker \(\mathrm{C}\) has \(\mathrm{NaOH}\) beaker \(\mathrm{D}\) has \(\mathrm{Ba}(\mathrm{OH})_{2}\) beaker \(\mathrm{E}\) has \(\mathrm{NH}_{4} \mathrm{Cl}\) beaker \(\mathrm{F}\) has \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\) Answer the questions below, using LT (for is less than), GT (for is greater than), \(\mathrm{EQ}\) (for is equal to), or MI (for more information required). (a) The \(\mathrm{pH}\) in beaker \(\mathrm{A}\) _____ the \(\mathrm{pH}\) in beaker \(\mathrm{B}\). (b) The \(\mathrm{pH}\) in beaker \(\mathrm{C}\) _____ the \(\mathrm{pH}\) in beaker \(\mathrm{D}\). (c) The \% ionization in beaker A _____ the \(\%\) ionization in beaker \(\mathrm{C}\). (d) The \(\mathrm{pH}\) in beaker \(\mathrm{B}\) _____ the \(\mathrm{pH}\) in beaker \(\mathrm{E}\). (e) The \(\mathrm{pH}\) in beaker \(\mathrm{E}\) _____ the \(\mathrm{pH}\) in beaker \(\mathrm{F}\). (f) The \(\mathrm{pH}\) in beaker \(\mathrm{C}\) _____ the \(\mathrm{pH}\) in beaker \(\mathrm{F}\)

A student prepares \(455 \mathrm{~mL}\) of a KOH solution, but neglects to write down the mass of \(\mathrm{KOH}\) added. His TA suggests that he take the \(\mathrm{pH}\) of the solution. The \(\mathrm{pH}\) is \(13.33 .\) How many grams of KOH were added?

Using the Tables in Appendix \(1,\) calculate \(\Delta H\) for the reaction of the following. (a) \(1.00 \mathrm{~L}\) of \(0.100 \mathrm{M} \mathrm{NaOH}\) with \(1.00 \mathrm{~L}\) of \(0.100 \mathrm{MHCl}\) (b) \(1.00 \mathrm{~L}\) of \(0.100 \mathrm{M} \mathrm{NaOH}\) with \(1.00 \mathrm{~L}\) of \(0.100 \mathrm{M}\) HF, taking the heat of formation of \(\mathrm{HF}(a q)\) to be \(-320.1 \mathrm{~kJ} / \mathrm{mol}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free