Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate \(\mathrm{H}^{+}\) and \(\mathrm{OH}^{-}\) in solutions with the following \(\mathrm{pH}\). (a) 9.0 (b) 3.20 (c) -1.05 (d) 7.46

Short Answer

Expert verified
Question: Calculate the concentrations of H⁺ and OH⁻ ions in solutions with the following pH values: (a) 9.0, (b) 3.20, (c) -1.05, and (d) 7.46. Answer: (a) [H⁺] = 1.0 × 10⁻⁹ M, [OH⁻] = 1.0 × 10⁻⁵ M (b) [H⁺] = 6.31 × 10⁻⁴ M, [OH⁻] = 1.59 × 10⁻¹¹ M (c) [H⁺] = 1.13 × 10¹ M, [OH⁻] = 8.85 × 10⁻¹⁶ M (d) [H⁺] = 3.47 × 10⁻⁸ M, [OH⁻] = 2.88 × 10⁻⁷ M

Step by step solution

01

Determine the \(\mathrm{H}^{+}\) concentration

We will begin by finding the concentration of \(\mathrm{H}^{+}\) ions using the formula: \(\mathrm{pH} = -\log{[\mathrm{H}^{+}]}\). To find the concentration of \(\mathrm{H}^{+}\), we'll rewrite this formula as \([\mathrm{H}^{+}] = 10^{-\mathrm{pH}}\).
02

Determine the \(\mathrm{OH}^{-}\) concentration

We will find the concentration of \(\mathrm{OH}^{-}\) ions using the ion product constant for water, \(K_\mathrm{w} = [\mathrm{H}^{+}][\mathrm{OH}^{-}] = 1.0 \times 10^{-14}\). By rearranging this formula, we can find the concentration of \(\mathrm{OH}^{-}\) ions: \([\mathrm{OH}^{-}] = \frac{K_\mathrm{w}}{[\mathrm{H}^{+}]}\). Now, we will apply these steps to find the concentrations of \(\mathrm{H}^{+}\) and \(\mathrm{OH}^{-}\) ions for each given \(\mathrm{pH}\) value. (a) \(\mathrm{pH} = 9.0\)
03

Calculate \(\mathrm{H}^{+}\) concentration in (a)

\([\mathrm{H}^{+}] = 10^{-9.0} = 1.0 \times 10^{-9}\,\mathrm{M}\)
04

Calculate \(\mathrm{OH}^{-}\) concentration in (a)

\([\mathrm{OH}^{-}] =\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-9}} = 1.0 \times 10^{-5}\,\mathrm{M}\) (b) \(\mathrm{pH} = 3.20\)
05

Calculate \(\mathrm{H}^{+}\) concentration in (b)

\([\mathrm{H}^{+}] = 10^{-3.20} = 6.31 \times 10^{-4}\,\mathrm{M}\)
06

Calculate \(\mathrm{OH}^{-}\) concentration in (b)

\([\mathrm{OH}^{-}] =\frac{1.0 \times 10^{-14}}{6.31 \times 10^{-4}} = 1.59 \times 10^{-11}\,\mathrm{M}\) (c) \(\mathrm{pH} = -1.05\)
07

Calculate \(\mathrm{H}^{+}\) concentration in (c)

\([\mathrm{H}^{+}] = 10^{-(-1.05)} = 1.13 \times 10^1\,\mathrm{M}\)
08

Calculate \(\mathrm{OH}^{-}\) concentration in (c)

\([\mathrm{OH}^{-}] =\frac{1.0 \times 10^{-14}}{1.13 \times 10^1} = 8.85 \times 10^{-16}\,\mathrm{M}\) (d) \(\mathrm{pH} = 7.46\)
09

Calculate \(\mathrm{H}^{+}\) concentration in (d)

\([\mathrm{H}^{+}] = 10^{-7.46} = 3.47 \times 10^{-8}\,\mathrm{M}\)
10

Calculate \(\mathrm{OH}^{-}\) concentration in (d)

\([\mathrm{OH}^{-}] =\frac{1.0 \times 10^{-14}}{3.47 \times 10^{-8}} = 2.88 \times 10^{-7}\,\mathrm{M}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Anisic acid \(\left(K_{\mathrm{a}}=3.38 \times 10^{-3}\right)\) is found in anise seeds and is used as a flavoring agent. For a \(0.279 \mathrm{M}\) solution of anisic acid, calculate (a) \(\left[\mathrm{H}^{+}\right]\) (b) \(\left[\mathrm{OH}^{-}\right]\) (c) \(\mathrm{pH}\) (d) \% ionization

What is the freezing point of vinegar, which is an aqueous solution of \(5.00 \%\) acetic acid, \(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2},\) by mass \((d=\) \(\left.1.006 \mathrm{~g} / \mathrm{cm}^{3}\right) ?\)

Consider an aqueous solution of a weak base, NaB \((\mathrm{MM}=233 \mathrm{~g} / \mathrm{mol})\). It has a pH of 10.54 . The freezing point of the solution is \(-0.89^{\circ} \mathrm{C}\) and its density is \(1.00 \mathrm{~g} / \mathrm{mol}\). Find \(K_{\mathrm{b}}\) for the weak base \(\mathrm{B}^{-}\).

Paraminobenzene \((\mathrm{PABA}), \mathrm{HC}_{7} \mathrm{H}_{6} \mathrm{NO}_{2},\) is used in some sunscreens. A solution is made up of 0.263 mol PABA in enough water to make \(750.0 \mathrm{~mL}\) of solution. The solution has \(\left[\mathrm{H}^{+}\right]=2.6 \times 10^{-3} \mathrm{M} .\) What is \(K_{\mathrm{a}}\) for \(\mathrm{PABA}\) ?

Using the Bronsted-Lowry model, write equations to show why the following species behave as weak acids in water. (a) \(\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}\) (b) \(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\) (c) \(\mathrm{H}_{2} \mathrm{~S}\) (d) \(\mathrm{HPO}_{4}^{2-}\) (e) \(\mathrm{HClO}_{2}\) (f) \(\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{+}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free