Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write equilibrium constant \((K)\) expressions for the following reactions: (a) \(\mathrm{I}_{2}(s)+2 \mathrm{Cl}^{-}(g) \rightleftharpoons \mathrm{Cl}_{2}(g)+2 \mathrm{I}^{-}(a q)\) (b) \(\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}^{+}(a q) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)\) (c) \(\mathrm{Au}^{2+}(a q)+4 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Au}(\mathrm{CN})_{4}^{2-}(a q)\)

Short Answer

Expert verified
#Question# Write the equilibrium constant expressions for the following reactions: (a) $$\mathrm{I}_{2}(s)+2 \mathrm{Cl}^{-}(g) \rightleftharpoons \mathrm{Cl}_{2}(g)+2 \mathrm{I}^{-}(a q)$$ (b) $$\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}^{+}(a q) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)$$ (c) $$\mathrm{Au}^{2+}(a q)+4 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Au}(\mathrm{CN})_{4}^{2-}(a q)$$ #Answer# (a) $$K_{a} =\frac{[\mathrm{I}^{-}]^2}{[\mathrm{Cl}^{-}]^2}$$ (b) $$K_{b} = \frac{[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}]}{[\mathrm{CH}_{3} \mathrm{NH}_{2}][\mathrm{H}^{+}]}$$ (c) $$K_{c} = \frac{[\mathrm{Au}(\mathrm{CN})_{4}^{2-}]}{[\mathrm{Au}^{2+}][\mathrm{CN}^{-}]^4}$$

Step by step solution

01

(Reaction 1: Equilibrium constant expression)

Given reaction (a): $$\mathrm{I}_{2}(s)+2 \mathrm{Cl}^{-}(g) \rightleftharpoons \mathrm{Cl}_{2}(g)+2 \mathrm{I}^{-}(a q)$$ The equilibrium expression can be written as: $$K_{a} = \frac{[\mathrm{Cl}_{2}][\mathrm{I}^{-}]^2}{[\mathrm{I}_{2}][\mathrm{Cl}^{-}]^2}$$ However, since \(\mathrm{I}_{2}\) is in solid state, its concentration remains constant and does not affect the position of the equilibrium. Thus, we can simplify the expression as: $$K_{a} =\frac{[\mathrm{I}^{-}]^2}{[\mathrm{Cl}^{-}]^2}$$
02

(Reaction 2: Equilibrium constant expression)

Given reaction (b): $$\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}^{+}(a q) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)$$ The equilibrium expression can be written as: $$K_{b} = \frac{[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}]}{[\mathrm{CH}_{3} \mathrm{NH}_{2}][\mathrm{H}^{+}]}$$
03

(Reaction 3: Equilibrium constant expression)

Given reaction (c): $$\mathrm{Au}^{2+}(a q)+4 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Au}(\mathrm{CN})_{4}^{2-}(a q)$$ The equilibrium expression can be written as: $$K_{c} = \frac{[\mathrm{Au}(\mathrm{CN})_{4}^{2-}]}{[\mathrm{Au}^{2+}][\mathrm{CN}^{-}]^4}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Benzaldehyde, a flavoring agent, is obtained by the dehydrogenation of benzyl alcohol. $$ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}(g) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(g)+\mathrm{H}_{2}(g) $$ \(K\) for the reaction at \(250^{\circ} \mathrm{C}\) is \(0.56 .\) If \(1.50 \mathrm{~g}\) of benzyl alcohol is placed in a \(2.0-\mathrm{L}\) flask and heated to \(250^{\circ} \mathrm{C}\) (a) what is the partial pressure of the benzaldehyde when equilibrium is established? (b) how many grams of benzyl alcohol remain at equilibrium?

For the decomposition of \(\mathrm{CaCO}_{3}\) at \(900^{\circ} \mathrm{C}, \mathrm{K}=1.04\). $$ \mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{O}_{2}(g) $$ Find the smallest mass of \(\mathrm{CaCO}_{3}\) needed to reach equilibrium in a \(5.00-\mathrm{L}\) vessel at \(900^{\circ} \mathrm{C}\).

At a certain temperature, nitrogen and oxygen gases combine to form nitrogen oxide gas. $$ \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g) $$ When equilibrium is established, the partial pressures of the gases $$ \text { are: } P_{\mathrm{N}_{2}}=1.200 \mathrm{~atm}, P_{\mathrm{O}_{2}}=0.800 \mathrm{~atm}, P_{\mathrm{NO}}=0.0220 \mathrm{~atm} . $$ (a) Calculate \(K\) at the temperature of the reaction. (b) After equilibrium is reached, more oxygen is added to make its partial pressure 1.200 atm. Calculate the partial pressure of all gases when equilibrium is reestablished.

Hydrogen iodide gas decomposes to hydrogen gas and iodine gas: $$ 2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) $$ To determine the equilibrium constant of the system, identical one-liter glass bulbs are filled with \(3.20 \mathrm{~g}\) of HI and maintained at a certain temperature. Each bulb is periodically opened and analyzed for iodine formation by titration with sodium thiosulfate, \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\) $$ \mathrm{I}_{2}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(a q)+2 \mathrm{I}^{-}(a q) $$ It is determined that when equilibrium is reached, \(37.0 \mathrm{~mL}\) of \(0.200 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\) is required to titrate the iodine. What is \(K\) at the temperature of the experiment?

Consider the equilibrium $$ \mathrm{H}_{2}(g)+\mathrm{S}(s) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(g) $$ When this system is at equilibrium at \(25^{\circ} \mathrm{C}\) in a \(2.00-\mathrm{L}\) container, \(0.120 \mathrm{~mol}\) of \(\mathrm{H}_{2}, 0.034 \mathrm{~mol}\) of \(\mathrm{H}_{2} \mathrm{~S},\) and \(0.4000 \mathrm{~mol}\) of \(\mathrm{S}\) are present. When the temperature is increased to \(35^{\circ} \mathrm{C}\), the partial pressure of \(\mathrm{H}_{2}\) increases to \(1.56 \mathrm{~atm} .\) (a) What is \(K\) for the reaction at \(25^{\circ} \mathrm{C} ?\) (b) What is \(K\) for the reaction at \(35^{\circ} \mathrm{C} ?\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free