Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write equilibrium constant \((K)\) expressions for the following reactions: (a) \(\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons 2 \mathrm{NaO}(s)+\mathrm{CO}_{2}(g)\) (b) \(\mathrm{C}_{2} \mathrm{H}_{6}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons 2 \mathrm{CO}(g)+5 \mathrm{H}_{2}(g)\) (c) \(4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g)\) (d) \(\mathrm{NH}_{3}(g)+\mathrm{HI}(l) \rightleftharpoons \mathrm{NH}_{4} \mathrm{I}(s)\)

Short Answer

Expert verified
Question: Write the equilibrium constant expressions for the following reactions: (a) \(\mathrm{Na}_{2}\mathrm{CO}_{3}(s) \rightleftharpoons 2\mathrm{NaO}(s)+\mathrm{CO}_{2}(g)\) (b) \(\mathrm{C}_{2}\mathrm{H}_{6}(g)+2\mathrm{H}_{2}\mathrm{O}(l) \rightleftharpoons 2\mathrm{CO}(g)+5\mathrm{H}_{2}(g)\) (c) \(4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g)\) (d) \(\mathrm{NH}_{3}(g)+\mathrm{HI}(l) \rightleftharpoons \mathrm{NH}_{4} \mathrm{I}(s)\) Answer: (a) \(K=[\mathrm{CO}_{2}(g)]\) (b) \(K=\frac{[\mathrm{CO}(g)]^{2}[\mathrm{H}_{2}(g)]^{5}}{[\mathrm{C}_{2}\mathrm{H}_{6}(g)]}\) (c) \(K=\frac{[\mathrm{NH}_{3}(g)]^{4}[\mathrm{O}_{2}(g)]^{5}}{[\mathrm{NO}(g)]^{4}[\mathrm{H}_{2}\mathrm{O}(g)]^{6}}\) (d) \(K=\frac{1}{[\mathrm{NH}_{3}(g)]}\)

Step by step solution

01

(a) Write the equilibrium constant expression for \(\mathrm{Na}_{2}\mathrm{CO}_{3}(s) \rightleftharpoons 2\mathrm{NaO}(s)+\mathrm{CO}_{2}(g)\)

Since the concentration of solids is considered constant, only the \([\mathrm{CO}_{2}(g)]\) is accounted for in this equilibrium expression. Therefore, the equilibrium constant \((K)\) expression for reaction (a) is: \(K=[\mathrm{CO}_{2}(g)]\)
02

(b) Write the equilibrium constant expression for \(\mathrm{C}_{2}\mathrm{H}_{6}(g)+2\mathrm{H}_{2}\mathrm{O}(l) \rightleftharpoons 2\mathrm{CO}(g)+5\mathrm{H}_{2}(g)\)

In this case, we account for the concentrations of gases only, disregarding the liquid concentration. The equilibrium constant \((K)\) expression for reaction (b) is: \(K=\frac{[\mathrm{CO}(g)]^{2}[\mathrm{H}_{2}(g)]^{5}}{[\mathrm{C}_{2}\mathrm{H}_{6}(g)]}\)
03

(c) Write the equilibrium constant expression for \(4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g)\)

All components in this reaction are gases, so we account for the concentration of each species. The equilibrium constant \((K)\) expression for reaction (c) is: \(K=\frac{[\mathrm{NH}_{3}(g)]^{4}[\mathrm{O}_{2}(g)]^{5}}{[\mathrm{NO}(g)]^{4}[\mathrm{H}_{2}\mathrm{O}(g)]^{6}}\)
04

(d) Write the equilibrium constant expression for \(\mathrm{NH}_{3}(g)+\mathrm{HI}(l) \rightleftharpoons \mathrm{NH}_{4} \mathrm{I}(s)\)

Here, we neglect the concentrations of the liquid and solid components, only considering the gas concentration. The equilibrium constant \((K)\) expression for reaction (d) is: \(K=\frac{1}{[\mathrm{NH}_{3}(g)]}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given the following reactions and their equilibrium constants, $$ \begin{aligned} \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) & \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g) & & K=1.6 \\ \mathrm{FeO}(s)+\mathrm{CO}(g) & \rightleftharpoons \mathrm{Fe}(s)+\mathrm{CO}_{2}(g) & & K=0.67 \end{aligned} $$ calculate \(K\) for the reaction $$ \mathrm{Fe}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{FeO}(s)+\mathrm{H}_{2}(g) $$

Ammonium carbamate solid \(\left(\mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{NH}_{2}\right)\) decomposes at \(313 \mathrm{~K}\) into ammonia and carbon dioxide gases. At equilibrium, analysis shows that there are \(0.0451 \mathrm{~atm}\) of \(\mathrm{CO}_{2}\), 0.0961 atm of ammonia, and \(0.159 \mathrm{~g}\) of ammonium carbamate. (a) Write a balanced equation for the decomposition of one mole of \(\mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{NH}_{2}\). (b) Calculate \(K\) at \(313 \mathrm{~K}\).

Mustard gas, used in chemical warfare in World War I, has been found to be an effective agent in the chemotherapy of Hodgkin's disease. It can be produced according to the following reaction: $$ \mathrm{SCl}_{2}(g)+2 \mathrm{C}_{2} \mathrm{H}_{4}(g) \rightleftharpoons \mathrm{S}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(g) $$ An evacuated \(5.0-\mathrm{L}\) flask at \(20.0^{\circ} \mathrm{C}\) is filled with \(0.258 \mathrm{~mol}\) \(\mathrm{SCl}_{2}\) and \(0.592 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}\). After equilibrium is established, 0.0349 mol mustard gas is present. (a) What is the partial pressure of each gas at equilibrium? (b) What is \(K\) at \(20.0^{\circ} \mathrm{C} ?\)

Consider the system $$ \mathrm{A}(g)+2 \mathrm{~B}(g)+\mathrm{C}(s) \rightleftharpoons 2 \mathrm{D}(g) $$ at \(25^{\circ} \mathrm{C}\). At zero time, only \(\mathrm{A}, \mathrm{B},\) and \(\mathrm{C}\) are present. The reaction reaches equilibrium 10 min after the reaction is initiated. Partial pressures of \(\mathrm{A}, \mathrm{B},\) and \(\mathrm{D}\) are written as \(P_{\mathrm{A}}, P_{\mathrm{B}},\) and \(P_{\mathrm{D}}\) Answer the questions below, using LT (for is less than), GT (for is greater than), EQ (for is equal to), or MI (for more information required). (a) \(P_{\mathrm{D}}\) at \(11 \mathrm{~min}\) $$ P_{\mathrm{D}} \text { at } 12 \mathrm{~min} $$ (b) \(P_{\mathrm{A}}\) at \(5 \mathrm{~min} \longrightarrow P_{\mathrm{A}}\) at \(7 \mathrm{~min}\). (c) \(K\) for the forward reaction reaction. (d) At equilibrium, \(K \longrightarrow\) (e) After the system is at equilibrium, more of gas \(\mathrm{B}\) is added. After the system returns to equilibrium, \(K\) before the addition of \(\mathrm{B} \longrightarrow \mathrm{K}\) after the addition of \(\mathrm{B}\). (f) The same reaction is initiated, this time with a catalyst. \(K\) for the system without a catalyst \(K\) for the system with a catalyst. (g) \(K\) for the formation of one mole of \(\mathrm{D}\) \(K\) for the formation of two moles of \(\mathrm{D}\). (h) The temperature of the system is increased to \(35^{\circ} \mathrm{C} . P_{\mathrm{B}}\) at equilibrium at \(25^{\circ} \mathrm{C}\) \(P_{\mathrm{B}}\) at equilibrium at \(35^{\circ} \mathrm{C}\). (i) Ten more grams of \(\mathrm{C}\) are added to the system. \(P_{\mathrm{B}}\) before the addition of \(\mathrm{C} \longrightarrow P_{\mathrm{B}}\) after the addition of \(\mathrm{C}\).

Nitrogen dioxide can decompose to nitrogen oxide and oxygen. $$ 2 \mathrm{NO}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) $$ \(K\) is 0.87 at a certain temperature. A \(5.0-\mathrm{L}\) flask at equilibrium is determined to have a total pressure of 1.25 atm and oxygen to have a partial pressure of 0.515 atm. Calculate \(P_{\mathrm{NO}}\) and \(P_{\mathrm{NO}_{2}}\) at equilibrium.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free