Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At a certain temperature, nitrogen and oxygen gases combine to form nitrogen oxide gas. $$ \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g) $$ When equilibrium is established, the partial pressures of the gases $$ \text { are: } P_{\mathrm{N}_{2}}=1.200 \mathrm{~atm}, P_{\mathrm{O}_{2}}=0.800 \mathrm{~atm}, P_{\mathrm{NO}}=0.0220 \mathrm{~atm} . $$ (a) Calculate \(K\) at the temperature of the reaction. (b) After equilibrium is reached, more oxygen is added to make its partial pressure 1.200 atm. Calculate the partial pressure of all gases when equilibrium is reestablished.

Short Answer

Expert verified
Answer: The equilibrium constant (\(K\)) at this temperature is \(5.07 \times 10^{-4}\). When equilibrium is reestablished, the partial pressures of the gases are \(P_{\mathrm{N}_{2}} = 1.19556 \mathrm{~atm}\), \(P_{\mathrm{O}_{2}} = 1.19556 \mathrm{~atm}\), and \(P_{\mathrm{NO}} = 0.03088 \mathrm{~atm}\).

Step by step solution

01

Write the expression for the equilibrium constant K

For a given reaction: $$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)$$ The equilibrium constant, \(K\), is given by the following expression: $$K = \frac{[\mathrm{NO}]^2}{[\mathrm{N}_{2}] \cdot [\mathrm{O}_{2}]}$$ In this case, the partial pressures of the gases at equilibrium are given instead of concentrations. We can use the partial pressures to write the expression for K in terms of pressure: $$K_p = \frac{P_{\mathrm{NO}}^2}{P_{\mathrm{N}_{2}} \cdot P_{\mathrm{O}_{2}}}$$
02

Calculate the equilibrium constant K

We have the initial partial pressures for the gases at equilibrium: $$P_{\mathrm{N}_{2}}=1.200 \mathrm{~atm}, P_{\mathrm{O}_{2}}=0.800 \mathrm{~atm}, P_{\mathrm{NO}}=0.0220 \mathrm{~atm}$$ We can now plug these values into the expression for \(K_p\) to calculate the equilibrium constant: $$K_p = \frac{(0.0220)^2}{(1.200) \cdot (0.800)}$$ Calculate \(K_p\): $$K_p = 5.07 \times 10^{-4}$$ (a) The equilibrium constant \(K\) at this temperature is \(5.07 \times 10^{-4}\).
03

Calculate the new partial pressures after adding oxygen

When more oxygen is added to make its partial pressure 1.200 atm, we need to determine the new partial pressures when equilibrium is reestablished. Let \(x\) be the change in the partial pressure due to the addition of oxygen. Then, the new equilibrium partial pressures can be expressed as: $$P'_{\mathrm{N}_{2}}=1.200 - x \mathrm{~atm}$$ $$P'_{\mathrm{O}_{2}}=1.200 - x \mathrm{~atm}$$ $$P'_{\mathrm{NO}}=0.0220 + 2x \mathrm{~atm}$$ At the new equilibrium, the reaction quotient (\(Q\)) will be equal to \(K_p\). We can write the expression for \(Q\) using the new partial pressures: $$Q_p = \frac{(0.0220 + 2x)^2}{(1.200 - x)(1.200 - x)}$$ Now we can set \(Q_p = K_p\) $$5.07 \times 10^{-4} = \frac{(0.0220 + 2x)^2}{(1.200 - x)(1.200 - x)}$$ Solve the equation for \(x\). After solving, we get: $$x = 0.00444$$ Now, we can calculate the new partial pressures at equilibrium using the value of \(x\): $$P'_{\mathrm{N}_{2}}=1.200 - 0.00444 = 1.19556 \mathrm{~atm}$$ $$P'_{\mathrm{O}_{2}}=1.200 - 0.00444 = 1.19556 \mathrm{~atm}$$ $$P'_{\mathrm{NO}}=0.0220 + 2(0.00444) = 0.03088 \mathrm{~atm}$$ (b) When equilibrium is reestablished after adding more oxygen, the partial pressures of the gases are: $$P'_{\mathrm{N}_{2}} = 1.19556 \mathrm{~atm}$$ $$P'_{\mathrm{O}_{2}} = 1.19556 \mathrm{~atm}$$ $$P'_{\mathrm{NO}} = 0.03088 \mathrm{~atm}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the reaction $$ \mathrm{C}(s)+\mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g) $$ \(K=168\) at \(1273 \mathrm{~K}\). If one starts with \(0.3 \mathrm{~atm}\) of \(\mathrm{CO}_{2}\) and \(12.0 \mathrm{~g}\) of \(\mathrm{C}\) at \(1273 \mathrm{~K}\), will the equilibrium mixture contain (a) mostly \(\mathrm{CO}_{2} ?\) (b) mostly CO? (c) roughly equal amounts of \(\mathrm{CO}_{2}\) and \(\mathrm{CO}\) ? (d) only C?

Write an equation for an equilibrium system that would lead to the following expressions \((\mathrm{a}-\mathrm{c})\) for \(\mathrm{K}\). (a) \(K=\frac{\left(P_{\mathrm{CO}}\right)^{2}\left(P_{\mathrm{H}_{2}}\right)^{5}}{\left(P_{\mathrm{C}_{2} \mathrm{H}_{6}}\right)\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}}\) (b) \(K=\frac{\left(P_{\mathrm{NH}}\right)^{4}\left(P_{\mathrm{O}_{2}}\right)^{5}}{\left(P_{\mathrm{NO}}\right)^{4}\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{6}}\) (c) \(K=\frac{\left[\mathrm{ClO}_{3}^{-}\right]^{2}\left[\mathrm{Mn}^{2+}\right]^{2}}{\left(P_{\mathrm{Cl}_{2}}\right)\left[\mathrm{MnO}_{4}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{4}} ;\) liquid water is a product

Sulfur oxychloride, \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\), decomposes to sulfur dioxide and chlorine gases. $$ \mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g) $$ At a certain temperature, the equilibrium partial pressures of \(\mathrm{SO}_{2}, \mathrm{Cl}_{2},\) and \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) are \(1.88 \mathrm{~atm}, 0.84 \mathrm{~atm},\) and \(0.27 \mathrm{~atm}\) respectively. (a) What is \(K\) at that temperature? (b) Enough \(\mathrm{Cl}_{2}\) condenses to reduce its partial pressure to 0.68 atm. What are the partial pressures of all gases when equilibrium is reestablished?

The reversible reaction between hydrogen chloride gas and one mole of oxygen gas produces steam and chlorine gas: $$ 4 \mathrm{HCl}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{Cl}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \quad K=0.79 $$ Predict the direction in which the system will move to reach equilibrium if one starts with $$ \text { (a) } P_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{HCl}}=P_{\mathrm{O}_{2}}=0.20 \mathrm{~atm} $$ (b) \(P_{\mathrm{HCl}}=0.30 \mathrm{~atm}, P_{\mathrm{H}_{2} \mathrm{O}}=0.35 \mathrm{~atm}, P_{\mathrm{Cl}_{2}}=0.2 \mathrm{~atm}\) \(P_{\mathrm{O}_{2}}=0.15 \mathrm{~atm}\)

At a certain temperature, the reaction $$ \mathrm{Xe}(g)+2 \mathrm{~F}_{2}(g) \rightleftharpoons \mathrm{XeF}_{4}(g) $$ gives a \(50.0 \%\) yield of \(\mathrm{XeF}_{4},\) starting with \(\mathrm{Xe}\left(P_{\mathrm{Xe}}=0.20 \mathrm{~atm}\right)\) and \(\mathrm{F}_{2}\left(P_{\mathrm{F}_{2}}=0.40 \mathrm{~atm}\right) .\) Calculate \(K\) at this temperature. What must the initial pressure of \(\mathrm{F}_{2}\) be to convert \(75.0 \%\) of the xenon to \(\mathrm{XeF}_{4}\) ?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free