Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the following reaction at \(75^{\circ} \mathrm{C}\) : $$ 3 \mathrm{R}(s)+2 \mathrm{Q}(g) \rightleftharpoons \mathrm{A}(g)+5 \mathrm{~B}(l) \quad K=9.4 $$ A \(10.0-\mathrm{L}\) sample contains \(0.30 \mathrm{~mol}\) of \(\mathrm{R}\) and \(\mathrm{Q}\) and \(0.50 \mathrm{~mol}\) of \(\mathrm{A}\) and \(\mathrm{B}\). In which direction will the reaction proceed?

Short Answer

Expert verified
Answer: The reaction will proceed to the left (reactants are favored).

Step by step solution

01

Write down the reaction and given information

Write down the reaction and the given information to have an easy reference during the calculations: $$ 3 \mathrm{R}(s)+2 \mathrm{Q}(g) \rightleftharpoons \mathrm{A}(g)+5\mathrm{~B}(l) \quad K=9.4 $$ Initial molar amounts: $$ [\mathrm R] = 0.3 M $$ $$ [\mathrm Q] = 0.3 M $$ $$ [\mathrm A] = 0.5 M $$ $$ [\mathrm B] = 0.5 M $$ Volume of the reaction: $$ V = 10 L $$
02

Calculate the initial concentrations

Calculate initial concentrations of the reacting species, using the volume of the reaction: $$ [\mathrm R]_0 = \frac{0.3 \,\text{mol}}{10 \,\text{L}} = 0.03\,\text{M} $$ $$ [\mathrm Q]_0 = \frac{0.3 \,\text{mol}}{10 \,\text{L}} = 0.03\,\text{M} $$ $$ [\mathrm A]_0 = \frac{0.5 \,\text{mol}}{10 \,\text{L}} = 0.05\,\text{M} $$ $$ [\mathrm B]_0 = \frac{0.5 \,\text{mol}}{10 \,\text{L}} = 0.05\,\text{M} $$
03

Calculate the reaction quotient Qc

Calculate the reaction quotient, Qc, using the initial concentrations: $$ Q_c = \frac{[\mathrm A]_0[\mathrm B]^5_0}{[\mathrm Q]^2_0} = \frac{(0.05\,\text{M})(0.05\,\text{M})^5}{(0.03\,\text{M})^2} ≈ 14.6 $$
04

Compare Qc to K and determine the direction of the reaction

Compare the calculated Q_c to the equilibrium constant K: $$ \begin{cases} Q_c \gt K \implies \text{Reaction proceeds to the left}, \\ Q_c = K \implies \text{System is already at equilibrium}, \\ Q_c \lt K \implies \text{Reaction proceeds to the right}. \end{cases} $$ Given that \(Q_c ≈ 14.6\) and \(K = 9.4\), we have \(Q_c > K\), which implies that the reaction will proceed to the left (reactants are favored).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the reaction $$ \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) $$ \(K\) at a certain temperature is \(3.7 \times 10^{-4}\). Predict the direction in which the system will move to reach equilibrium if one starts with $$ \begin{array}{l} \text { (a) } P_{\mathrm{N}_{2}}=P_{\mathrm{H}_{2}}=P_{\mathrm{NH}_{3}}=0.01 \mathrm{~atm} \\ \text { (b) } P_{\mathrm{NH}_{3}}=0.0045 \mathrm{~atm} \end{array} $$ (c) \(P_{\mathrm{N}_{2}}=1.2 \mathrm{~atm}, P_{\mathrm{H}_{2}}=1.88 \mathrm{~atm}, P_{\mathrm{NH}_{3}}=0.0058 \mathrm{~atm}\)

Consider the following hypothetical reactions and their equilibrium constants at \(75^{\circ} \mathrm{C}\) $$ \begin{array}{ll} 3 \mathrm{~A}(g) \rightleftharpoons 3 \mathrm{~B}(g)+2 \mathrm{C}(g) & K_{1}=0.31 \\ 3 \mathrm{D}(g)+2 \mathrm{~B}(g) \rightleftharpoons 2 \mathrm{C}(g) & K_{2}=2.8 \end{array} $$ Find the equilibrium constant at \(75^{\circ} \mathrm{C}\) for the following reaction $$ \mathrm{A}(g) \rightleftharpoons \mathrm{D}(g)+\frac{5}{3} \mathrm{~B}(g) $$

Write a chemical equation for an equilibrium system that would lead to the following expressions \((\mathrm{a}-\mathrm{d})\) for \(K\). (a) \(K=\frac{\left(P_{\mathrm{H}_{2} \mathrm{~S}}\right)^{2}\left(P_{\mathrm{O}_{2}}\right)^{3}}{\left(P_{\mathrm{SO}_{2}}\right)^{2}\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}}\) (b) \(K=\frac{\left(P_{\mathrm{F}_{2}}\right)^{1 / 2}\left(P_{\mathrm{I}_{2}}\right)^{1 / 2}}{P_{\mathrm{IF}}}\) (c) \(K=\frac{\left[\mathrm{Cl}^{-}\right]^{2}}{\left(P_{\mathrm{Cl}_{2}}\right)\left[\mathrm{Br}^{-}\right]^{2}}\) (d) \(K=\frac{\left(P_{\mathrm{NO}}\right)^{2}\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}\left[\mathrm{Cu}^{2+}\right]^{3}}{\left[\mathrm{NO}_{3}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{8}}\)

At \(627^{\circ} \mathrm{C}, K=0.76\) for the reaction $$ 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g) $$ Calculate \(K\) at \(627^{\circ} \mathrm{C}\) for (a) the synthesis of one mole of sulfur trioxide gas. (b) the decomposition of two moles of \(\mathrm{SO}_{3}\).

Consider the system $$ \mathrm{SO}_{3}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \quad \Delta H=98.9 \mathrm{~kJ} $$ (a) Predict whether the forward or reverse reaction will occur when the equilibrium is disturbed by 1\. adding oxygen gas. 2\. compressing the system at constant temperature. 3\. adding argon gas. 4\. removing \(\mathrm{SO}_{2}(g)\). 5\. decreasing the temperature. (b) Which of the above factors will increase the value of K? Which will decrease it?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free