Chapter 3: Problem 62
Diborane, \(\mathrm{B}_{2} \mathrm{H}_{6}\), can be prepared by the following reaction: $$ 3 \mathrm{NaBH}_{4}(s)+4 \mathrm{BF}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}(g)+3 \mathrm{NaBF}_{4}(s) $$ (a) How many moles of \(\mathrm{NaBH}_{4}\) react with \(1.299 \mathrm{~mol}\) of \(\mathrm{BF}_{3} ?\) (b) How many moles of \(\mathrm{B}_{2} \mathrm{H}_{6}\) can be obtained from \(0.893 \mathrm{~mol}\) of \(\mathrm{NaBH}_{4} ?\) (c) If \(1.987 \mathrm{~mol}\) of \(\mathrm{B}_{2} \mathrm{H}_{6}\) is obtained, how many moles of \(\mathrm{NaBF}_{4}\) are produced? (d) How many moles of \(\mathrm{BF}_{3}\) are required to produce \(4.992 \mathrm{~mol}\) of \(\mathrm{NaBF}_{4} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.