Chapter 19: Problem 72
It is possible to estimate the activation energy for fusion by calculating the energy required to bring two deuterons close enough to one another to form an alpha particle. This energy can be obtained by using Coulomb's law in the form \(E=8.99 \times 10^{9} q_{1} q_{2} / r\), where \(q_{1}\) and \(q_{2}\) are the charges of the deuterons \(\left(1.60 \times 10^{-19} \mathrm{C}\right), r\) is the radius of the He nucleus, about \(2 \times 10^{-15} \mathrm{~m}\), and \(E\) is the energy in joules. (a) Estimate \(E\) in joules per alpha particle. (b) Using the equation \(E=m v^{2} / 2\), estimate the velocity (meters per second) each deuteron must have if a collision between the two of them is to supply the activation energy for fusion \((m\) is the mass of the deuteron in kilograms).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.