Chapter 11: Problem 3
Consider the following hypothetical reaction: $$\mathrm{X}(g) \longrightarrow \mathrm{Y}(g)$$ A 200.0-mL flask is filled with \(0.120\) moles of \(\mathrm{X}\). The disappearance of \(\mathrm{X}\) is monitored at timed intervals. Assume that temperature and volume are kept constant. The data obtained are shown in the table below. $$\begin{array}{lccccc}\hline \text { Time }(\min ) & 0 & 20 & 40 & 60 & 80 \\\ \text { moles of } \mathrm{X} & 0.120 & 0.103 & 0.085 & 0.071 & 0.066 \\ \hline\end{array}$$ (a) Make a similar table for the appearance of Y. (b) Calculate the average disappearance of \(\mathrm{X}\) in \(\mathrm{M} / \mathrm{s}\) in the first two twenty-minute intervals. (c) What is the average rate of appearance of \(\mathrm{Y}\) between the 20 - and 60-minute intervals?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.