Chapter 11: Problem 104
In a first-order reaction, suppose that a quantity \(X\) of a reactant is added at regular intervals of time, \(\Delta t\). At first the amount of reactant in the system builds up; eventually, however, it levels off at a saturation value given by the expression $$\text { saturation value }=\frac{X}{1-10^{-a}} \quad \text { where } a=0.30 \frac{\Delta t}{t_{1 / 2}}$$ This analysis applies to prescription drugs, of which you take a certain amount each day. Suppose that you take \(0.100 \mathrm{~g}\) of a drug three times a day and that the half-life for elimination is \(2.0\) days. Using this equation, calculate the mass of the drug in the body at saturation. Suppose further that side effects show up when \(0.500 \mathrm{~g}\) of the drug accumulates in the body. As a pharmacist, what is the maximum dosage you could assign to a patient for an 8 -h period without causing side effects?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.