Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Predict the products of each of the following reactions and then balance the chemical equations.

(a) Fe is heated in an atmosphere of steam.

(b) NaOH is added to a solution of Fe(NO3)3.

(c) FeSO4 is added to an acidic solution of KMnO4.

(d) Fe is added to a dilute solution of H2SO4.

(e) A solution of Fe(NO3)2 and HNO3 is allowed to stand in air.

(f) FeCO3 is added to a solution of HClO4.

(g) Fe is heated in air.

Short Answer

Expert verified

The balanced reactions are as follow:

a)\(3Fe + 4{H_2}O(g) \to F{e_3}{O_4}(s) + 4{H_2}(g)\)

b)\(3NaOH(aq) + Fe{(N{O_3})_3}(aq) \to Fe{(OH)_3}(s) + 3N{a^ + }(aq) + 3NO_3^ - (aq)\)

c)\(5F{e^{2 + }} + MnO_4^ - + 8{H^ + } \to 5F{e^{3 + }} + M{n^{2 + }} + 4{H_2}O(l)\)

d)\(Fe(s) + 2{H_3}{O^ + }(aq) + SO_4^{2 - }(aq) \to FeS{O_4}(aq) + {H_2}(g) + 2{H_2}O(l)\)

e)\(4F{e^{2 + }}(aq) + {O_2}(g) + HN{O_3}(aq) \to 4F{e^{3 + }}(aq) + NO_3^ - (aq) + 2{H_2}O(l)\)

f)\(FeC{O_3}(s) + 2HCl{O_4}(aq) \to Fe{(Cl{O_4})_2}(aq) + C{O_2}(g) + {H_2}O(l)\)

g) \(3Fe(s) + 2{O_2}(g) \to F{e_3}{O_4}(s)\)

Step by step solution

01

Redox Reaction

Redox is a type of chemical reaction in which the oxidation states of atoms are changed. Most often with one species undergoing oxidation while another species undergoes reduction.

02

Balancing the given equations

The following equations are balanced in following manner:

(a)

\(Fe(s) + {H_2}O(g) \to F{e_3}{O_4}(s) + {H_2}(g)\)

After balancing the oxidation number and reduction number we have:

\(\begin{aligned}{l}O:3Fe \to 3F{e^{\frac{8}{3} + }} + 8{e^ - }\\R:8{H^ + } + 8{e^ - } \to 8H\\\overline {3Fe + 8{H^ + } \to 3F{e^{\frac{8}{3} + }} + 8H} \end{aligned}\)

From, that we have,

\(3Fe + 4{H_2}O(g) \to F{e_3}{O_4}(s) + 4{H_2}(g)\)

(b)

\(NaOH(aq) + Fe{(N{O_3})_3}(aq) \to Fe{(OH)_3}(s) + N{a^ + }(aq) + NO_3^ - (aq)\)

After balancing the oxidation number and reduction number we have:

\(3NaOH(aq) + Fe{(N{O_3})_3}(aq) \to Fe{(OH)_3}(s) + N{a^ + }(aq) + 3NO_3^ - (aq)\)

From, that we have,

\(3NaOH(aq) + Fe{(N{O_3})_3}(aq) \to Fe{(OH)_3}(s) + 3N{a^ + }(aq) + 3NO_3^ - (aq)\)

(c)

\(F{e^{2 + }}(s) + MnO_4^ - (aq) + {H^ + }(aq) \to F{e^{3 + }}(aq) + M{n^{2 + }}(aq) + {H_2}O(l)\)

After balancing the oxidation number and reduction number we have:

\(\begin{aligned}{l}O:5F{e^{2 + }} \to 5F{e^{3 + }} + 5{e^ - }\\R:MnO_4^ - + 5{e^ - } + 8{H^ + } \to M{n^{2 + }} + 4{H_2}O\\\overline {5F{e^{2 + }} + MnO_4^ - + 8{H^ + } \to 5F{e^{3 + }} + M{n^{2 + }} + 4{H_2}O(l)} \end{aligned}\)

From, that we have,

\(5F{e^{2 + }} + MnO_4^ - + 8{H^ + } \to 5F{e^{3 + }} + M{n^{2 + }} + 4{H_2}O(l)\)

(d)

\(Fe(s) + {H_3}{O^ + }(aq) + SO_4^{2 - }(aq) \to FeS{O_4}(aq) + {H_2}(g) + {H_2}O(l)\)

After balancing the oxidation number and reduction number we have:

\(\begin{aligned}{l}O:Fe \to F{e^{2 + }} + 2{e^ - }\\R:2{H^ + } + 2{e^ - } \to 2{H^0}\\F{e^ + } + 2{H^ + } \to F{e^{2 + }} + 2{H^0}\end{aligned}\)

From, that we have,

\(Fe(s) + 2{H_3}{O^ + }(aq) + SO_4^{2 - }(aq) \to FeS{O_4}(aq) + {H_2}(g) + 2{H_2}O(l)\)

(e)

\(F{e^{2 + }}(aq) + {O_2}(g) + HN{O_3}(aq) \to F{e^{3 + }}(aq) + NO_3^ - (aq) + {H_2}O(l)\)

After balancing the oxidation number and reduction number we have:

\(\begin{aligned}{l}O:4F{e^{2 + }} \to 4F{e^{3 + }} + 4{e^ - }\\R:2{O^0} + 4{e^ - } \to 2{O^{2 - }}\\4F{e^{2 + }} + 2{O^0} \to 4F{e^{3 + }} + 2{O^{2 - }}\end{aligned}\)

From, that we have,

\(4F{e^{2 + }}(aq) + {O_2}(g) + HN{O_3}(aq) \to 4F{e^{3 + }}(aq) + NO_3^ - (aq) + 2{H_2}O(l)\)

(f)

\(FeC{O_3}(s) + HCl{O_4}(aq) \to Fe{(Cl{O_4})_2}(aq) + C{O_2}(g) + {H_2}O(l)\)

From, that we have,

\(FeC{O_3}(s) + 2HCl{O_4}(aq) \to Fe{(Cl{O_4})_2}(aq) + C{O_2}(g) + {H_2}O(l)\)

(g)

\(Fe(s) + {O_2}(g) \to F{e_3}{O_4}(s)\)

After balancing the oxidation number and reduction number we have:

\(\begin{aligned}{l}O:3Fe \to 3F{e^{\frac{8}{3} + }} + 8{e^ - }\\R:2{O^0} + 4{e^ - } \to 2{O^{2 - }}\\\overline {3Fe + 4{O^0} \to 3F{e^{\frac{8}{3} + }} + 4{O^{2 - }}} \end{aligned}\)

From, that we have,

\(3Fe(s) + 2{O_2}(g) \to F{e_3}{O_4}(s)\)

Hence, the final answer is,

The balanced reactions are as follow:

a)\(3Fe + 4{H_2}O(g) \to F{e_3}{O_4}(s) + 4{H_2}(g)\)

b)\(3NaOH(aq) + Fe{(N{O_3})_3}(aq) \to Fe{(OH)_3}(s) + 3N{a^ + }(aq) + 3NO_3^ - (aq)\)

c)\(5F{e^{2 + }} + MnO_4^ - + 8{H^ + } \to 5F{e^{3 + }} + M{n^{2 + }} + 4{H_2}O(l)\)

d)\(Fe(s) + 2{H_3}{O^ + }(aq) + SO_4^{2 - }(aq) \to FeS{O_4}(aq) + {H_2}(g) + 2{H_2}O(l)\)

e)\(4F{e^{2 + }}(aq) + {O_2}(g) + HN{O_3}(aq) \to 4F{e^{3 + }}(aq) + NO_3^ - (aq) + 2{H_2}O(l)\)

f)\(FeC{O_3}(s) + 2HCl{O_4}(aq) \to Fe{(Cl{O_4})_2}(aq) + C{O_2}(g) + {H_2}O(l)\)

g) \(3Fe(s) + 2{O_2}(g) \to F{e_3}{O_4}(s)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Trimethylphosphine, \(P{\left( {C{H_3}} \right)_3}\) can act as a ligand by donating the lone pair of electrons on the phosphorus atom. If trimethylphosphine is added to a solution of nickel \(\left( {II} \right)\) chloride in acetone, a blue compound that has a molecular mass of approximately \(270 g\) and contains \(21.5\% Ni,26.0\% Cl,\)and \(52.5\% P{\left( {C{H_3}} \right)_3}\) can be isolated. This blue compound does not have any isomeric forms. What are the geometry and molecular formula of the blue compound?

Which of the following elements is most likely to form an oxide with the formula\(M{O_3}\): Zr, Nb, or Mo?

The following reactions all occur in a blast furnace. Which of these are redox reactions?

\(\begin{aligned}{l}(a)3F{e_2}{O_3}(s) + CO(g) \to 2F{e_3}{O_4}(s) + C{O_2}(g)\\(b)F{e_3}{O_4}(s) + CO(g) \to 3FeO(s) + C{O_2}(g)\\(c)FeO(s) + CO(g) \to Fe(l) + C{O_2}(g)\\(d)C(s) + {O_2}(g) \to C{O_2}(g)\\(e)C(s) + C{O_2}(g) \to 2CO(g)\\(f)CaC{O_3}(s) + CaO(s) \to C{O_2}(g)\\(g)CaO(s) + Si{O_2}(s) \to CaSi{O_3}(l)\end{aligned}\)

Name each of the compounds or ions given in \(Exercise 19.30\).

Sketch the structures of the following complexes. Indicate any cis, trans, and optical isomers.

\(\begin{aligned}{}(a)\left( {Pt{{\left( {{H_2}O} \right)}_2}B{r_2}} \right)\\(b)\left( {Pt\left( {N{H_3}} \right)(py)(Cl)(Br)} \right)\\(c)\left( {Zn{{\left( {N{H_3}} \right)}_3}Cl} \right)\\(d){\left( {Pt{{\left( {N{H_3}} \right)}_3}Cl} \right)^ + }\\(e)\left( {Ni{{\left( {{H_2}O} \right)}_4}C{l_2}} \right)\\(f){\left( {Co{{\left( {{C_2}{O_4}} \right)}_2}C{l_2}} \right)^{3 - }}\end{aligned}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free