Reaction is:
\(\begin{array}{l}{\rm{Ca}}{({\rm{OH}})_2}(\;{\rm{S}}) \to {\rm{CaO}}({\rm{S}}) + {{\rm{H}}_2}{\rm{O - - - - - - - }}({\rm{l}})\\\Delta {S^\theta }\left( {{\rm{Ca}}{{({\rm{OH}})}_2}} \right) = 83.39\;{\rm{J}}/{\rm{molK}}\\\Delta {S^\theta }({\rm{CaO}}) = 38.2\;{\rm{J}}/{\rm{molK}}\\\Delta {S^\theta }\left( {{{\rm{H}}_2}{\rm{O}}} \right) = 69.91\;{\rm{J}}/{\rm{molK}}\end{array}\)
Calculate \(\Delta {s^\theta }\) of the reaction:
\(\Delta {S^\theta } = \Delta {S^\theta }(\)Product \() - \Delta {S^\theta }({\mathop{\rm Reactant}\nolimits} )\)
\(\Delta {S^\theta } = \left[ {\Delta {S^\theta }({\rm{CaO}}) + \Delta {S^\theta }\left( {{{\rm{H}}_2}{\rm{O}}} \right)} \right] - \left[ {\Delta {S^\theta }\left( {{\rm{Ca}}{{({\rm{OH}})}_2}} \right)} \right]\)
\(\Delta {S^\theta } = [38.2 + 69.91] - [83.39]\)
\(\Delta {S^\theta } = (108.11 - 83.39){\rm{J}}\mid {\rm{kmol}}\)
\(\Delta {s^\theta } = + 24.72\;{\rm{J}}/{\rm{kmo}}\quad \)(Answer)
Hence; the standard entropy changed is \( + 24.72\;{\rm{J}}/{\rm{kmol}}\)