Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Many plastic materials are organic polymers that contain carbon and hydrogen. The oxidation of these plastics in air to form carbon dioxide and water is a spontaneous process; however, plastic materials tend to persist in the environment. Explain.

Short Answer

Expert verified

Plastics are kinetically stable and do not decompose rapidly even over long periods of time.

Step by step solution

01

Definition of Spontaneous reaction.

  • The term "spontaneous reaction" refers to a reaction that does not involve the application of any external force or energy. Lied to a forward reaction by using non-spontaneous reactions.
02

Determine that plastics are tend to persist in the environment.

  • The rate of oxidation tends to be very slow even when the oxidation of plastics happens spontaneously.
  • In order to go forward, they require external energy. Organic polymers are used to make plastics.
  • Carbon and hydrogen make up their structure. When they come into contact with oxygen in the air, they produce carbon dioxide and water. This is the result of oxidation on plastic.
  • Although it is a spontaneous reaction, the oxidation is gradual and the decomposition takes a long time.
  • Plastic materials, as a result, tend to persist in the environment on our kinetically stable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An important source of copper is from the copper ore, chalcocite, a form of copper(I) sulfide. When heated, the \({\bf{C}}{{\bf{u}}_{\bf{2}}}{\bf{S}}\) decomposes to form copper and sulfur described by the following equation:

\({\bf{C}}{{\bf{u}}_{\bf{2}}}{\bf{\;S(s)}} \to {\bf{Cu(s) + S(s)}}\)

(a) Determine \({\bf{\Delta G}}_{{\bf{298}}}^{\bf{^\circ }}\)for the decomposition of \({\bf{C}}{{\bf{u}}_{\bf{2}}}{\bf{S(\;s)}}\).

(b) The reaction of sulfur with oxygen yields sulfur dioxide as the only product. Write an equation that describes this reaction, and determine\({\bf{\Delta G}}_{{\bf{298}}}^{\bf{^\circ }}\)for the process.

(c) The production of copper from chalcocite is performed by roasting the \({\bf{C}}{{\bf{u}}_{\bf{2}}}{\bf{S}}\) in air to produce the \({\bf{Cu}}\). By combining the equations from Parts (a) and (b), write the equation that describes the roasting of the chalcocite, and explain why coupling these reactions together makes for a more efficient process for the production of the copper.

Use the thermodynamic data provided in Appendix G to calculate the equilibrium constant for the dissociation of dinitrogen tetraoxide at 25 ยฐC.

Calculate ฮ”Gยฐ using

(a) free energies of formation and

(b) enthalpies of formation and entropies(Appendix G). Do the results indicate the reaction to be spontaneous or nonspontaneous at 25 ยฐC?

\({{\bf{C}}_{\bf{2}}}{{\bf{H}}_{\bf{4}}}{\bf{(g)}} \to {{\bf{H}}_{\bf{2}}}{\bf{(g) + }}{{\bf{C}}_{\bf{2}}}{{\bf{H}}_{\bf{4}}}{\bf{(g)}}\)

"Thermite" reactions have been used for welding metal parts such as railway rails and in metal refining. One such thermite reaction is \({\bf{F}}{{\bf{e}}_{\bf{2}}}{{\bf{O}}_{\bf{3}}}{\bf{(s) + 2Al(s)}} \to {\bf{A}}{{\bf{l}}_{\bf{2}}}{{\bf{O}}_{\bf{3}}}{\bf{(s) + 2Fe(s)}}\). Is the reaction spontaneous at room temperature under standard conditions? During the reaction, the surroundings absorb \({\bf{851}}{\bf{.8\;kJ/mol}}\)of heat.

Use the information in Appendix G to estimate the boiling point of CS2.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free