Chapter 5: Q39 E (page 271)
Explain how the heat measured in example 5.5 differs from the enthalpy change for the endothermic reaction described by the following equation
HCl(aq)+NaOH(aq) → NaCl(aq)+H2O(I)
Chapter 5: Q39 E (page 271)
Explain how the heat measured in example 5.5 differs from the enthalpy change for the endothermic reaction described by the following equation
HCl(aq)+NaOH(aq) → NaCl(aq)+H2O(I)
All the tools & learning materials you need for study success - in one app.
Get started for freeA 248-g piece of copper initially at 314 °C is dropped into 390 mL of water initially at 22.6 °C. Assuming that all heat transfer occurs between copper and water, calculate the final temperature.
The decomposition of hydrogen peroxide, \({{\bf{H}}_{\bf{2}}}{{\bf{O}}_{\bf{2}}}\), has been used to provide thrust in the control jets of various space vehicles. Using the data in Appendix G, determine how much heat is produced by the decomposition of exactly 1 mole of \({{\bf{H}}_{\bf{2}}}{{\bf{O}}_{\bf{2}}}\)under standard conditions.
\({\bf{2}}{{\bf{H}}_{\bf{2}}}{{\bf{O}}_{\bf{2}}}\left( {\bf{l}} \right) \to {\bf{2}}{{\bf{H}}_{\bf{2}}}{\bf{O}}\left( {\bf{g}} \right){\bf{ + }}{{\bf{O}}_{\bf{2}}}\left( {\bf{g}} \right)\)
In the early days of automobiles, illumination at night was provided by burning acetylene, C2H2. Though no longer used as auto headlamps, acetylene is still used as a source of light by some cave explorers. The acetylene is (was) prepared in the lamp by the reaction of water with calcium carbide, CaC2:
\({\bf{Ca}}{{\bf{C}}_{\bf{2}}}\left( {\bf{s}} \right){\bf{ + 2}}{{\bf{H}}_{\bf{2}}}{\bf{O}}\left( {\bf{l}} \right) \to {\bf{Ca}}{\left( {{\bf{OH}}} \right)_{\bf{2}}}\left( {\bf{s}} \right){\bf{ + }}{{\bf{C}}_{\bf{2}}}{{\bf{H}}_{\bf{2}}}\left( {\bf{g}} \right)\)
Calculate the standard enthalpy of the reaction. The \({\bf{\Delta H}}_{\bf{f}}^{\bf{o}}\)of CaC2is -15.14 kcal/mol.
Question:How much heat, in joules, must be added to a 5.00×102-g iron skillet to increase its temperature from 25°C to 250 °C? The specific heat of iron is 0.451 J/g °C.
A sample of 0.562 g of carbon is burned in oxygen in a bomb calorimeter, producing carbon dioxide. Assume both the reactants and products are under standard state conditions, and that the heat released is directly proportional to the enthalpy of combustion of graphite. The temperature of the calorimeter increases from 26.74 °C to 27.93 °C. What is the heat capacity of the calorimeter and its contents?
What do you think about this solution?
We value your feedback to improve our textbook solutions.