Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 11: Question 68 E (page 650)

An organic compound has a mass composition of 93.46% C and 6.54% H. A solution of 0.090 g of this compound in 1.10 g of camphor melts at 158.4 °C. The melting point of pure camphor is 178.4 °C.\({\bf{Kf}}\)for camphor is 37.7 °C/m. What is the molecular formula of the solute? Show your calculations.

Short Answer

Expert verified

The molecular formula of the solute is \({{\rm{C}}_{{\rm{12}}}}{{\rm{H}}_{{\rm{10}}}}\).

Step by step solution

01

Molecular Formula

The molecular formula may be defined as the formula which tells about the proportion and constituent present in the molecules.

02

Calculate the molecular mass of the substance

\({\rm{\Delta Tf = }}{{\rm{K}}_{\rm{f}}}{\rm{ \times m = }}{{\rm{K}}_{\rm{f}}}{\rm{ \times }}\dfrac{{\left( {{\rm{Number of Moles}}} \right)}}{{{\rm{Mass of Solvent}}}}{\rm{ }}\)

\(Number\:{\rm{ }}of\:{\rm{ }}Moles{\rm{ }} = {\rm{ }}\dfrac{{Mass}}{{Molar{\rm{ }}Mass}}{\rm{ }}\)

\(\begin{aligned}{\rm{Molar}}\;{\rm{Mass}}\; &= \;{{\rm{K}}_{\rm{f}}}\dfrac{{\left( {{\rm{Mass}}\;{\rm{of}}\;{\rm{Solute}}} \right)}}{{{\rm{\Delta }}{{\rm{T}}_{\rm{f}}}\left( {{\rm{Mass}}\;{\rm{of}}\;{\rm{Solvent}}} \right)}}\\{\rm{Molar}}\;{\rm{Mass}} &= \;\dfrac{{\left( {{\rm{37}}{\rm{.7^\circ C}}} \right)\left( {{\rm{0}}{\rm{.045}}\;{\rm{kg}}} \right)}}{{\left( {{\rm{20}}{\rm{.0^\circ C}}} \right)\left( {{\rm{0}}{\rm{.000550}}\;{\rm{kg}}} \right)}}\\{\rm{Molar}}\;{\rm{Mass}} &= \;{\rm{154}}{\rm{.2}}\;{\rm{g}}\;{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}\end{aligned}\)

03

Calculate the empirical formula of the substance

Empirical formula:

\(\begin{aligned}{\rm{C}} & = \;\dfrac{{{\rm{93}}{\rm{.46}}\;{\rm{g}}}}{{{\rm{12}}{\rm{.011}}\;{\rm{g}}\;{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}}}\\{\rm{C}} &= \;{\rm{7}}{\rm{.781}}\;{\rm{mole}}\end{aligned}\)

By dividing with the smallest mole to get the empirical formula

\(\begin{aligned}{\rm{C}} &= \;\dfrac{{{\rm{7}}{\rm{.781}}}}{{{\rm{6}}{\rm{.4885}}}}\\{\rm{C}} &= \;{\rm{1}}{\rm{.2}}\end{aligned}\)

\(\begin{aligned}{\rm{H}} &= \;\dfrac{{{\rm{6}}{\rm{.5}}\;{\rm{g}}}}{{{\rm{1}}{\rm{.0794}}\;{\rm{g}}\;{\rm{mol}}{{\rm{e}}^{{\rm{ - 1}}}}}}\\{\rm{H}} &= \;{\rm{6}}{\rm{.4885}}\;{\rm{mole}}\\{\rm{H}} &= \;\dfrac{{{\rm{6}}{\rm{.4885}}}}{{{\rm{6}}{\rm{.4885}}}}\\{\rm{H}} &= \;{\rm{1}}\end{aligned}\)

Ratio : \({{\rm{C}}_{{\rm{1}}{\rm{.2}}}}{\rm{H}}\;{\rm{or}}\;{{\rm{C}}_{{\rm{12}}}}{{\rm{H}}_{{\rm{10}}}}\)

The formula mass of \({{\rm{C}}_{{\rm{12}}}}{{\rm{H}}_{{\rm{10}}}}\) agrees with the calculated formula mass.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free