Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Iodine that enters the body is stored in the thyroid gland from which it is released to control growth and metabolism. The thyroid can be imaged if iodine\({\rm{ - 131}}\)is injected into the body. In larger doses, I\({\rm{ - 133}}\)is also used as a means of treating cancer of the thyroid. I\({\rm{ - 131}}\)has a half-life of\({\rm{8}}{\rm{.70}}\)days and decays by\({\rm{\beta - }}\)emission. (a) Write an equation for the decay. (b) How long will it take for\({\rm{95}}{\rm{.0\% }}\)of a dose of I\({\rm{ - 131}}\)to decay?

Short Answer

Expert verified
  1. The equation for decay is obtained as:\(_{{\rm{53}}}^{{\rm{133}}}{\rm{I}} \to _{{\rm{ - 1}}}^{\rm{0}}{\rm{e + }}_{{\rm{53}}}^{{\rm{133}}}{\rm{Xe}}\).
  2. It will take \({\rm{37}}{\rm{.6}}\) days to decay.

Step by step solution

01

Step 1: Nuclear Chemistry

Nuclear chemistry is a branch of chemistry that studies radioactivity, nuclear processes, and atomic nuclei alterations such as nuclear transmutation and nuclear characteristics.

02

Subpart a)

The equation we have is:

\(_{{\rm{53}}}^{{\rm{133}}}{\rm{I}} \to _{{\rm{ - 1}}}^{\rm{0}}{\rm{e + }}_{\rm{y}}^{\rm{x}}{\rm{?}}\)

The mass on the left side is \({\rm{133}}\), which means we also require the total of \({\rm{133}}\) on the right side:

\(\begin{array}{c}{\rm{x + 0 = 133}}\\{\rm{x = 133}}\end{array}\)

Because the atomic number on the left is \({\rm{53}}\), we must also have the total of \({\rm{53}}\) on the right:

\(\begin{array}{c}{\rm{y + ( - 1) = 53}}\\{\rm{y = 54}}\end{array}\)

The element xenon, with an atomic number of \({\rm{54}}\), is found in the periodic table. The reaction is as follows:

\(_{{\rm{53}}}^{{\rm{133}}}{\rm{I}} \to _{{\rm{ - 1}}}^{\rm{0}}{\rm{e + }}_{{\rm{53}}}^{{\rm{133}}}{\rm{Xe}}\)

Therefore, the equation is: \(_{{\rm{53}}}^{{\rm{133}}}{\rm{I}} \to _{{\rm{ - 1}}}^{\rm{0}}{\rm{e + }}_{{\rm{53}}}^{{\rm{133}}}{\rm{Xe}}\).

03

Subpart b)

There is a simple formula for calculating the time of decay:

The value of \({\rm{t}}\) is time, \({\rm{\lambda }}\) is the radioactive decay constant, \({{\rm{n}}_{\rm{0}}}\) is the starting concentration of the radioactive material, and \({{\rm{n}}_{\rm{t}}}\) is the concentration of the radioactive substance over time \({\rm{t}}\).

We may deduce \({\rm{\lambda }}\) from the half-life:

\(\begin{array}{c}{\rm{\lambda = }}\frac{{{\rm{In(2)}}}}{{{{\rm{t}}_{{\rm{1/2}}}}}}\\{\rm{ = }}\frac{{{\rm{In(2)}}}}{{{\rm{8}}{\rm{.70 days}}}}\\{\rm{ = 0}}{\rm{.07967 days}}\end{array}\)

Then the value of\({{\rm{n}}_{\rm{0}}}\)is\(1\)and\({{\rm{n}}_{\rm{t}}}\)is of\({\rm{95\% }}\).

So, we get:

\(\begin{array}{c}{{\rm{n}}_{\rm{t}}}{\rm{ = 0}}{\rm{.95 \times 1}}\\{\rm{ = 0}}{\rm{.05}}\end{array}\)

The time is then obtained as:

\(\begin{array}{c}{\rm{t = }}\frac{{\rm{1}}}{{{\rm{0}}{\rm{.07967 day}}}}{\rm{In}}\frac{{\rm{1}}}{{{\rm{0}}{\rm{.05}}}}\\{\rm{ = 37}}{\rm{.6 day}}\end{array}\)

Therefore, the decay time will be: \({\rm{37}}{\rm{.6 day}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free