Now, at normal boiling point \({{\bf{T}}_2}\), vapor pressure, \({{\bf{P}}_2} = 1\;{\rm{atm}} = 760\;{\rm{mmHg}}\)
Thus, we have, \(\begin{aligned}{}{T_2} &= {56.5^\circ }{\rm{C}}\\ &= 56.5 + 273\;{\rm{K}}\\ &= 329.5\;{\rm{K}},\\{P_2} &= 760\;{\rm{mmHg}},\\\Delta {H_{{\rm{vap }}}} &= 31.3\;{\rm{kJ}}/{\rm{mol}} &= 31300\;{\rm{J}}/{\rm{mol}}\end{aligned}\),
\({T_1} = {25^\circ }{\rm{C}} = 25 + 273\;{\rm{K}} = 298\;{\rm{K}}\),
Now, substituting the values in the above relation, we have
\(\ln \frac{{{P_1}}}{{760{\rm{mmHg}}}} = \frac{{31300\;{\rm{J}}/{\rm{mol}}}}{{8.314\;{\rm{J}}/{\rm{mol}}.{\rm{K}}}}\left( {\frac{1}{{329.5\;{\rm{K}}}} - \frac{1}{{298\;{\rm{K}}}}} \right)\)
\( \Rightarrow \ln \frac{{{P_1}}}{{760{\rm{mmHg}}}} = (3764.73\;{\rm{K}}) \times \left( { - 0.000321\;{{\rm{K}}^{ - 1}}} \right)\)
\( \Rightarrow \ln \frac{{{P_1}}}{{760{\rm{mmHg}}}} = - 1.208\)
\(\begin{aligned}{} \Rightarrow \frac{{{P_1}}}{{760{\rm{mmHg}}}} &= {e^{( - 1.208)}}\\ \Rightarrow {P_1} &= {e^{( - 1.208)}} \times 760{\rm{mmHg}}\\ \Rightarrow {P_1} &= 0.299 \times 760{\rm{mmHg}}\\ &= > {P_1} = 227.1{\rm{mmHg}}\end{aligned}\)
Therefore, the vapor pressure of acetone at given temperature is \(227.1{\bf{mmHg}}\).