Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For acetone (CH3)2CO, the normal boiling point is 56.5 °C and the enthalpy of vaporization is 31.3 kJ/mol.What is the vapor pressure of acetone at 25.0°C?

Short Answer

Expert verified

The vapor pressure of acetone at given temperature is \(227.1{\bf{mmHg}}\).

Step by step solution

01

Define the vapour pressure  

Clausius-Clapeyron equation pertains to the relationship between the pressure and temperature. It is given by,

\(\ln \frac{{{P_1}}}{{{P_2}}} = \frac{{\Delta {H_{{\rm{vap }}}}}}{R}\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)\)

Where, \({{\bf{P}}_1}\) is the vapor pressure at \({{\bf{T}}_1}\) temperature

\({{\bf{P}}_2}\)is the vapor pressure at \({{\bf{T}}_2}\) temperature

\(\Delta {H_{vap}}\)is the enthalpy of vaporization

\({\bf{R}}\) is the universal gas constant \( = 8.314\;{\rm{J}}/{\rm{mol}}.{\rm{K}}\)

02

 Identify the enthalpy of vaporization for ethanol.

Now, at normal boiling point \({{\bf{T}}_2}\), vapor pressure, \({{\bf{P}}_2} = 1\;{\rm{atm}} = 760\;{\rm{mmHg}}\)

Thus, we have, \(\begin{aligned}{}{T_2} &= {56.5^\circ }{\rm{C}}\\ &= 56.5 + 273\;{\rm{K}}\\ &= 329.5\;{\rm{K}},\\{P_2} &= 760\;{\rm{mmHg}},\\\Delta {H_{{\rm{vap }}}} &= 31.3\;{\rm{kJ}}/{\rm{mol}} &= 31300\;{\rm{J}}/{\rm{mol}}\end{aligned}\),

\({T_1} = {25^\circ }{\rm{C}} = 25 + 273\;{\rm{K}} = 298\;{\rm{K}}\),

Now, substituting the values in the above relation, we have

\(\ln \frac{{{P_1}}}{{760{\rm{mmHg}}}} = \frac{{31300\;{\rm{J}}/{\rm{mol}}}}{{8.314\;{\rm{J}}/{\rm{mol}}.{\rm{K}}}}\left( {\frac{1}{{329.5\;{\rm{K}}}} - \frac{1}{{298\;{\rm{K}}}}} \right)\)

\( \Rightarrow \ln \frac{{{P_1}}}{{760{\rm{mmHg}}}} = (3764.73\;{\rm{K}}) \times \left( { - 0.000321\;{{\rm{K}}^{ - 1}}} \right)\)

\( \Rightarrow \ln \frac{{{P_1}}}{{760{\rm{mmHg}}}} = - 1.208\)

\(\begin{aligned}{} \Rightarrow \frac{{{P_1}}}{{760{\rm{mmHg}}}} &= {e^{( - 1.208)}}\\ \Rightarrow {P_1} &= {e^{( - 1.208)}} \times 760{\rm{mmHg}}\\ \Rightarrow {P_1} &= 0.299 \times 760{\rm{mmHg}}\\ &= > {P_1} = 227.1{\rm{mmHg}}\end{aligned}\)

Therefore, the vapor pressure of acetone at given temperature is \(227.1{\bf{mmHg}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free