Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Account for the increase in reaction rate brought about by a catalyst.

Short Answer

Expert verified

Catalysts increases the rate of the reaction by decreasing the activation energy, by involving another reaction mechanism by allowing the reaction to attain equilibrium faster.

Step by step solution

01

Definition of catalyst

Catalyst are substances which increases the rate of the reaction without getting used up by themselves while decreasing the activation energy of the reaction.

02

Increase in the Reaction rate bought by a catalyst

  • Catalysts increase the rate of reaction by decreasing the activation energy. Example: Catalytic hydrogenation (alkene hydrogenation).
  • Many reactions occur at thermodynamically favourable conditions, but in the presence of catalyst, reactions occur at reasonable rate.
  • As the catalyst decrease the activation energy, it increases both forward and reverse reaction and makes reaction to attain equilibrium very fast.
  • The below graph represents the catalyzed and uncatalyzed alkene hydrogenation.

Thus, catalysts increase the rate of the reaction without taking part in the reaction and allows the reaction to attain equilibrium quickly.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

How much and in what direction will each of the following effect the rate of the reaction:

CO(g) + \({\bf{NO}}{}_{\bf{2}}\) (g)โŸถ \({\bf{CO}}{}_{\bf{2}}\) (g) + NO(g) if the rate law for the reaction is rate =\({\bf{k(NO}}{}_{\bf{2}}{{\bf{)}}^{\bf{2}}}{\bf{a}}\)?

  1. Decreasing the pressure of \({\bf{NO}}{}_{\bf{2}}\) from 0.50 atm to 0.250 atm.
  2. Increasing the concentration of CO from 0.01 M to 0.03 M.

Some bacteria are resistant to the antibiotic penicillin because they produce penicillinase, an enzyme with a molecular weight of \({\bf{3 \times 1}}{{\bf{0}}^{\bf{4}}}\)g/mole that converts penicillin into inactive molecules. Although the kinetics of enzyme-catalysed reactions can be complex, at low concentrations this reaction can be described by a rate equation that is first order in the catalyst (penicillinase) and that also involves the concentration of penicillin. From the following data: 1.0 L of a solution containing 0.15 ยตg (\({\bf{0}}{\bf{.15 \times 1}}{{\bf{0}}^{{\bf{ - 6}}}}\)g) of penicillinase, determine the order of the reaction with respect to penicillin and the value of the rate constant.

(Penicillin) (M)

Rate (mole/L/min)

\({\bf{2}}{\bf{.0 \times 1}}{{\bf{0}}^{{\bf{ - 6}}}}\) \(\)

\({\bf{1}}{\bf{.0 \times 1}}{{\bf{0}}^{{\bf{ - 10}}}}\)

\({\bf{3}}{\bf{.0 \times 1}}{{\bf{0}}^{{\bf{ - 6}}}}\)

\({\bf{1}}{\bf{.5 \times 1}}{{\bf{0}}^{{\bf{ - 10}}}}\)

\({\bf{4}}{\bf{.0 \times 1}}{{\bf{0}}^{{\bf{ - 6}}}}\)

\({\bf{2}}{\bf{.0 \times 1}}{{\bf{0}}^{{\bf{ - 10}}}}\)

Define these terms: (a) unimolecular reaction (b) bimolecular reaction (c) elementary reaction (d) overall reaction.

Define these terms: (a) unimolecular reaction (b) bimolecular reaction (c) elementary reaction (d) overall reaction.

An elevated level of the enzyme alkaline phosphatase (ALP) in the serum is an indication of possible liver or bone disorder. The level of serum ALP is so low that it is very difficult to measure directly. However, ALP catalyzes a number of reactions, and its relative concentration can be determined by measuring the rate of one of these reactions under controlled conditions. One such reaction is the conversion of p-nitrophenyl phosphate (PNPP) to p-nitrophenoxide ion (PNP) and phosphate ion. Control of temperature during the test is very important; the rate of the reaction increases 1.47 times if the temperature changes from 30 ยฐC to 37 ยฐC. What is the activation energy for the ALPโ€“catalyzed conversion of PNPP to PNP and phosphate?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free