Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Account for the relationship between the rate of a reaction and its activation energy.

Short Answer

Expert verified

The rate of reaction depends upon the activation energy; as the activation energy is high reaction rate is low, whereas if the activation energy is low, the reaction rate is high.

Step by step solution

01

Reaction Rate

The reaction involved the effective collision of two reactants to produce the desired products. Reactions can be natural, which occur in the surrounding environment, whereas it can be artificially done in the laboratory to form the desired product.

The reaction rate can be defined as the reaction speed to produce the products. The reaction rate can be slow, fast or moderate. The reaction can take less than a millisecond to produce products, or it can take years to produce the desired product.

02

Activation Energy

'Activation energy' term was used by Svante Arrhenius, a Swedish scientist, in the year 1889. The activation energy can be defined as the threshold energy (which is called the minimum amount of energy) after which the reaction takes place. A chemical reaction can take place because of the effective collision of the two or more reactants, which produces energy more than the threshold energy (minimum energy).

The unit of the Activation energy is Joule or kcal/mole.

03

Relation between Activation energy and Reaction rate

The rate of the reaction depends upon the Activation energy. As the activation energy is high, then the reaction rate is low, whereas if the activation energy is low, then the reaction rate is high. Activation energy can be defined as the “barrier” which is crossed by the reactant to produce products.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the PhET Reactions & Rates (http://openstaxcollege.org/l/16PHETreaction) interactive, on the Many Collisions tab, set up a simulation with 15 molecules of A and 10 molecules of BC. Select “Show Bonds” under Options.

  1. Leave the Initial Temperature at the default setting. Observe the reaction. Is the rate of reaction fast or slow?
  2. Click “Pause” and then “Reset All,” and then enter 15 molecules of A and 10 molecules of BC once again. Select “Show Bonds” under Options. This time, increase the initial temperature until, on the graph, the total average energy line is completely above the potential energy curve. Describe what happens to the reaction

The rate constant for the first-order decomposition at 45 °C of dinitrogen pentoxide, N2O5, dissolved in chloroform, \({\bf{CHC}}{{\bf{l}}_3}\), is 6.2 × 10−4 min−1.

\({\bf{2}}{{\bf{N}}_{\bf{2}}}{{\bf{O}}_{\bf{5}}} \to {\bf{4N}}{{\bf{O}}_{\bf{2}}}{\bf{ + }}{{\bf{O}}_{\bf{2}}}\)

What is the rate of the reaction when \({{\bf{N}}_{\bf{2}}}{{\bf{O}}_{\bf{5}}}{\bf{\; = 0}}{\bf{.40 M}}\)

The rate constant for the rate of decomposition of \({{\bf{N}}_{\bf{2}}}{{\bf{O}}_{\bf{5}}}\)to\({\bf{NO}}\) and \({{\bf{O}}_{\bf{2}}}\)in the gas phase is 1.66 L/mol/s at 650 K and 7.39 L/mol/s at 700 K:

\({\bf{2}}{{\bf{N}}_{\bf{2}}}{{\bf{O}}_{\bf{5}}}{\bf{(g) - - - 4NO(g) + 3}}{{\bf{O}}_{\bf{2}}}{\bf{(g)}}\)

Assuming the kinetics of this reaction are consistent with the Arrhenius equation, calculate the activation energy for this decomposition.

Go to the PhET Reactions & Rates interactive. Use the Single Collision tab to represent how the collision between monatomic oxygen (O) and carbon monoxide (CO) results in the breaking of one bond and the formation of another. Pull back on the red plunger to release the atom and observe the results. Then, click on “Reload Launcher” and change to “Angled shot” to see the difference.

  1. What happens when the angle of the collision is changed?
  2. Explain how this is relevant to rate of reaction.

Pure ozone decomposes slowly to oxygen,\({\bf{2}}{{\bf{O}}_{\bf{3}}}{\bf{(g)}} \to {\bf{3}}{{\bf{O}}_{\bf{2}}}{\bf{(g)}}\). Use the data provided in a graphical method and determine the order and rate constant of the reaction.

Time(hr)

0

2.0x103

7.6x 104

1.00x104

1.23x104

1.43x104

1.70x104

(O3) (M)

1.0x10-5

4.98x10-6

2.07x10-6

1.66x10-6

1.39x10-6

1.22x10-6

1.05x10-6

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free