Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Alcohol is removed from the bloodstream by a series of metabolic reactions. The first reaction produces acetaldehyde; then other products are formed. The following data have been determined for the rate at which alcohol is removed from the blood of an average male, although individual rates can vary by 25–30%. Women metabolize alcohol a little more slowly than men:

Determine the rate equation, the rate constant, and the overall order for this reaction.

Short Answer

Expert verified

Rate does not change with change concentration that’s why; it is zero order of the reaction.

The rate equation will be as follows

\(Rate = k{\left( {concentration} \right)^0}\)

\({\rm{Rate constant}}\left( k \right) = 2.0 \times {10^{ - 2}}\,{\rm{mol}}\,{{\rm{L}}^{{\rm{ - 1}}}}{{\rm{h}}^{{\rm{ - 1}}}}\)

Step by step solution

01

Metabolic reactions

In human the end product of alcohol metabolism is acetaldehyde, both in liver and brain by the action of enzymes alcohol dehydrogenase and cytochrome p450 respectively. Acetaldehyde is highly unstable, reactive and cytotoxic, which can cause severe liver damage.

02

Rate of reaction and concentration

The rate law for a chemical reaction is an expression that provides a relationship between the rate of the reaction and the concentration of the reactants participating in it. It can also be a second-order reaction.

An instantaneous rate of change is the change in the rate at a particular instant.

From the given table it is clear that rate is not changing with change in concentrations that means rate of reaction is independent of concentration of reactant which is the condition of zero order reaction.

Zero order reaction is a chemical reaction in which the rate of reaction is constant and independent of the concentration of reacting substance.

\(\begin{aligned}{}{\bf{Rate = k}}\\{\bf{k = 2}}{\bf{.0 \times 1}}{{\bf{0}}^{{\bf{ - 2}}}}{\bf{mol}}{{\bf{L}}^{{\bf{ - 1}}}}{{\bf{h}}^{{\bf{ - 1}}}}\end{aligned}\)

Here rate does not change with a change in concentration so, it is zero order of the reaction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Based on the diagrams in Exercise 12.82, which of the reactions has the fastest rate? Which has the slowest rate?

Nitro-glycerine is an extremely sensitive explosive. In a series of carefully controlled experiments, samples of the explosive were heated to 160 °C, and their first-order decomposition was studied. Determine the average rate constants for each experiment using the following data:

Initial (\({{\bf{C}}_{\bf{3}}}{{\bf{H}}_{\bf{5}}}{{\bf{N}}_{\bf{3}}}{{\bf{O}}_{\bf{9}}}\)) (M)

4.88

3.52

2.29

1.81

5.33

4.05

2.95

1.72

t(s)

300

300

300

300

180

180

180

180

% Decomposed

52.0

52.9

53.2

53.9

34.6

35.9

36.0

35.4

Experiments were conducted to study the rate of the reaction represented by this equation.(2)\({\rm{2NO(g) + 2}}{{\rm{H}}_{\rm{2}}}{\rm{(g) }} \to {\rm{ }}{{\rm{N}}_{\rm{2}}}{\rm{(g) + 2}}{{\rm{H}}_{\rm{2}}}{\rm{O(g)}}\)Initial concentrations and rates of reaction are given here.

Experiment Initial Concentration

\(\left( {{\bf{NO}}} \right){\rm{ }}\left( {{\bf{mol}}/{\bf{L}}} \right)\)

Initial Concentration, \(\left( {{{\bf{H}}_{\bf{2}}}} \right){\rm{ }}\left( {{\bf{mol}}/{\bf{L}}} \right)\)Initial Rate of Formation of \({{\bf{N}}_{\bf{2}}}{\rm{ }}\left( {{\bf{mol}}/{\bf{L}}{\rm{ }}{\bf{min}}} \right)\)
1\({\bf{0}}.{\bf{0060}}\)\({\bf{0}}.{\bf{00}}1{\bf{0}}\)\({\bf{1}}.{\bf{8}} \times {\bf{1}}{{\bf{0}}^{ - {\bf{4}}}}\)
2\({\bf{0}}.{\bf{0060}}\)\({\bf{0}}.{\bf{00}}2{\bf{0}}\)\({\bf{3}}.{\bf{6}} \times {\bf{1}}{{\bf{0}}^{ - {\bf{4}}}}\)
3\({\bf{0}}.{\bf{00}}1{\bf{0}}\)\({\bf{0}}.{\bf{0060}}\)\({\bf{0}}.{\bf{30}} \times {\bf{1}}{{\bf{0}}^{ - {\bf{4}}}}\)
4\({\bf{0}}.{\bf{00}}2{\bf{0}}\)\({\bf{0}}.{\bf{0060}}\)\({\bf{1}}.{\bf{2}} \times {\bf{1}}{{\bf{0}}^{ - {\bf{4}}}}\)

Consider the following questions:(a) Determine the order for each of the reactants, \({\bf{NO}}\) and \({{\bf{H}}_{\bf{2}}}\), from the data given and show your reasoning.(b) Write the overall rate law for the reaction.(c) Calculate the value of the rate constant, k, for the reaction. Include units.(d) For experiment 2, calculate the concentration of \({\bf{NO}}\)remaining when exactly one-half of the original amount of \({{\bf{H}}_{\bf{2}}}\) had been consumed.(e) The following sequence of elementary steps is a proposed mechanism for the reaction.Step 1:Step 2:Step 3:Based on the data presented, which of these is the rate determining step? Show that the mechanism is consistent with the observed rate law for the reaction and the overall stoichiometry of the reaction.

What is the activation energy of a reaction, and how is this energy related to the activated complex of the reaction?

Nitrogen monoxide reacts with chlorine according to the equation:

2NO(g) + Cl\({}_2\)(g)⟶ 2NOCl(g) The following initial rates of reaction have been observed for certain reactant concentrations:

What is the rate law that describes the rate’s dependence on the concentrations of NO and Cl2? What is the rate constant? What are the orders with respect to each reactant?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free