Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the PhET Reactions & Rates (http://openstaxcollege.org/l/16PHETreaction) interactive, on the Many Collisions tab, set up a simulation with 15 molecules of A and 10 molecules of BC. Select “Show Bonds” under Options.

  1. Leave the Initial Temperature at the default setting. Observe the reaction. Is the rate of reaction fast or slow?
  2. Click “Pause” and then “Reset All,” and then enter 15 molecules of A and 10 molecules of BC once again. Select “Show Bonds” under Options. This time, increase the initial temperature until, on the graph, the total average energy line is completely above the potential energy curve. Describe what happens to the reaction

Short Answer

Expert verified
  1. At default temperature, the rate of reaction is slow.
  2. On increasing temperature, the rate of reaction becomes fast.

Step by step solution

01

 Default temperature 

At the default temperature, the rate of reaction is slow. Molecules of A collide with BC molecules quite frequently; less molecule of them has sufficient energy to make a bond.

At default temperature, reactant molecules have low kinetic energy and low velocity, so the collision of reactant molecules are not much effective in making more bonds. Hence, the formation of product molecules occurs at a slow rate. Therefore, the rate of reaction is slow.

02

High temperature 

With the increase in temperature, the particle average velocity increases. The average kinetic energy of particles is also increased. The result is that the particle will collide more frequently and move around faster. This results in the encounter of more reactant particles.

Thus, on increasing temperature, the reaction rate increases because the reactant molecules collide at a faster rate at the high temperature, and their colloids result in the formation of products.

The molecule of reactants decreases when the molecule of products increases. After a while, there is ideally an equal amount of BC, AB, and C in the mixture with a slightly large amount of A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a transesterification reaction, a triglyceride reacts with an alcohol to form an ester and glycerol. Many students learn about the reaction between methanol (\({\bf{C}}{{\bf{H}}_{\bf{3}}}{\bf{OH}}\)) and ethyl acetate (\({\bf{C}}{{\bf{H}}_{\bf{3}}}{\bf{C}}{{\bf{H}}_{\bf{2}}}{\bf{OCOC}}{{\bf{H}}_{\bf{3}}}\)) as a sample reaction before studying the chemical reactions that produce biodiesel:

\({\bf{C}}{{\bf{H}}_{\bf{3}}}{\bf{OH + C}}{{\bf{H}}_{\bf{3}}}{\bf{C}}{{\bf{H}}_{\bf{2}}}{\bf{OCOC}}{{\bf{H}}_{\bf{3}}}{\bf{ - - - C}}{{\bf{H}}_{\bf{3}}}{\bf{OCOC}}{{\bf{H}}_{\bf{3}}}{\bf{ + C}}{{\bf{H}}_{\bf{3}}}{\bf{C}}{{\bf{H}}_{\bf{2}}}{\bf{OH}}\).The rate law for the reaction between methanol and ethyl acetate is, under certain conditions, determined to be: rate =\(k\left( {{\bf{C}}{{\bf{H}}_{\bf{3}}}{\bf{OH }}} \right)\). What is the order of reaction with respect to methanol and ethyl acetate, and what is the overall order of reaction?

Recently, the skeleton of King Richard III was found under a parking lot in England. If tissue samples from the skeleton contain about 93.79% of the carbon-14 expected in living tissue, what year did King Richard III die? The half-life for carbon-14 is 5730 years.

The rate constant for the decomposition of acetaldehyde, \({\bf{C}}{{\bf{H}}_{\bf{3}}}{\bf{CHO}}\), to methane, \({\bf{C}}{{\bf{H}}_{\bf{4}}}\), and carbon monoxide, CO, in the gas phase is 1.1 × 10−2 L/mol/s at 703 K and 4.95 L/mol/s at 865 K. Determine the activation energy for this decomposition.

If the rate of decomposition of ammonia, \({\bf{N}}{{\bf{H}}_{\bf{3}}}\), at 1150 K is \(2.10 \times 1{0^{ - 6}}mol/L/s\), what is the rate of production of nitrogen and hydrogen?

Nitrosyl chloride, NOCl, decomposes to NO and \({\bf{C}}{{\bf{l}}_{\bf{2}}}\).

\({\bf{2NOCl(g)}} \to {\bf{2NO(g) + C}}{{\bf{l}}_{\bf{2}}}{\bf{(g)}}\)

Determine the rate law, the rate constant, and the overall order for this reaction from the following data:

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free