Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Calculate the relative rate of diffusion of \(^{\rm{1}}{{\rm{H}}_{\rm{2}}}\) (molar mass \({\rm{2}}{\rm{.0 g/mol}}\)) compared to that of \(^{\rm{2}}{{\rm{H}}_{\rm{2}}}\) (molar mass \({\rm{4}}{\rm{.0 g/mol}}\)) and the relative rate of diffusion of \({{\rm{O}}_{\rm{2}}}\) (molar mass \({\rm{32 g/mol}}\)) compared to that of \({{\rm{O}}_{\rm{3}}}\) (molar mass \({\rm{48 g/mol}}\)).

Short Answer

Expert verified

The relative rates of diffusion of \(^{\rm{1}}{{\rm{H}}_{\rm{2}}}\) and \(^2{{\rm{H}}_{\rm{2}}}\), \({{\rm{O}}_{\rm{2}}}\) and \({{\rm{O}}_{\rm{3}}}\) are \({\rm{1}}{\rm{.414}}\) and \({\rm{1}}{\rm{.22}}\) respectively.

Step by step solution

01

Concept Introduction

The Graham's law states that a gas's rate of diffusion or effusion is inversely related to the square root of its molecular weight.

02

Relative Rates of Diffusion

Graham's finding relates the rate and the molar mass of a gas. If two gases \(A\) and \(B\) are at the same temperature and pressure, then the relative rates of diffusion for \(^{\rm{1}}{{\rm{H}}_{\rm{2}}}\) and \(^2{{\rm{H}}_{\rm{2}}}\) will be:

\(\begin{array}{l}\frac{{{\rm{ rate of diffusion of}}{{\rm{ }}^{\rm{1}}}{{\rm{H}}_{\rm{2}}}}}{{{\rm{ rate of diffusion of}}{{\rm{ }}^2}{{\rm{H}}_{\rm{2}}}}}{\rm{ = }}\frac{{\sqrt {{{\rm{M}}_{^2{{\rm{H}}_{\rm{2}}}}}} }}{{\sqrt {{{\rm{M}}_{^1{{\rm{H}}_{\rm{2}}}}}} }},\;Where\;\;M\;is{\rm{ }}the{\rm{ }}molar{\rm{ }}mass.\\{\rm{ = }}\sqrt {\frac{{\rm{4}}}{{\rm{2}}}} \\{\rm{ = }}\sqrt {{\rm{1}}{\rm{.1117}}} \\{\rm{ = 1}}{\rm{.414}}{\rm{.}}\end{array}\)

Therefore, the result obtained is \({\rm{1}}{\rm{.414}}\).

03

Relative Rates of Diffusion

Graham's finding relates the rate and the molar mass of a gas. If two gases \(A\) and \(B\) are at the same temperature and pressure, then the relative rates of diffusion for \({{\rm{O}}_{\rm{2}}}\) and \({{\rm{O}}_{\rm{3}}}\) will be:

\(\begin{array}{l}\frac{{{\rm{ rate of diffusion of }}{{\rm{O}}_3}}}{{{\rm{ rate of diffusion of }}{{\rm{O}}_2}}}{\rm{ = }}\frac{{\sqrt {{{\rm{M}}_{{{\rm{O}}_3}}}} }}{{\sqrt {{{\rm{M}}_{{{\rm{O}}_2}}}} }},\;Where\;\;M\;is{\rm{ }}the{\rm{ }}molar{\rm{ }}mass.\\{\rm{ = }}\sqrt {\frac{{{\rm{48}}}}{{{\rm{32}}}}} \\{\rm{ = }}\sqrt {{\rm{1}}{\rm{.1117}}} \\{\rm{ = 1}}{\rm{.22}}{\rm{.}}\end{array}\)

Therefore, the result obtained is \({\rm{1}}{\rm{.22}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free