Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

One molecule of haemoglobin combines with four molecules of oxygen. If \(({\rm{1}}{\rm{.0 g}}\) of haemoglobin combines with \(({\rm{1}}{\rm{.53 mL}}\) of oxygen at body temperature (\(({\rm{3}}{{\rm{7}}^{\rm{o}}}{\rm{C}}\)) and a pressure of \(({\rm{743 torr}}\), what is the molar mass of haemoglobin?

Short Answer

Expert verified

The molar mass of hemoglobin is 6.8×104g/mol.

Step by step solution

01

Calculation of moles of oxygen

One molecule of haemoglobin will combine with four molecules of oxygen. So, one mole of haemoglobin will combine with four moles of \({{\rm{O}}_2}\).

First, we calculate the number of moles of oxygen react with\(({\rm{1 g}}\)haemoglobin using the ideal gas equation:

\(\begin{aligned}{}{\rm{P = 743 torr \times }}\frac{{{\rm{1\;atm}}}}{{{\rm{760 torr }}}}\\{\rm{ = 0}}{\rm{.978\;atm}}\end{aligned}\)

\({\rm{T = 3}}{{\rm{7}}^{\rm{^\circ }}}{\rm{C + 273 = 310\;K, V = 1}}{\rm{.53\;mL = 1}}{\rm{.53 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{\;L}}\)

The number of moles of oxygen combined is

\(\begin{aligned}{}{\rm{n = }}\frac{{{\rm{PV}}}}{{{\rm{RT}}}}\\{\rm{ = }}\frac{{{\rm{0}}{\rm{.978\;atm \times 1}}{\rm{.53 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{\;L}}}}{{\left( {{\rm{0}}{\rm{.08206\;L\;atm mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{K}}^{{\rm{ - 1}}}}} \right){\rm{ \times 310\;K}}}}\\{\rm{ = 5}}{\rm{.88 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;mol}}\end{aligned}\)

02

Calculating molecular mass

One mole of oxygen combines with \(\frac{{\rm{1}}}{{\rm{4}}}{\rm{ moles}}\) of haemoglobin. So, the number of moles of haemoglobin combined with \(({\rm{5}}{\rm{.88 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;mol}}\)es of oxygen are

\(\frac{{\rm{1}}}{{\rm{4}}}{\rm{ \times 5}}{\rm{.88 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;mol = 1}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;mol}}\)

Moles of haemoglobin\({\rm{ = }}\frac{{{\rm{ Mass of hemoglobin }}}}{{{\rm{ Molar mass of hemoglobin }}}}\)

Molar mass of haemoglobin\({\rm{ = }}\frac{{{\rm{ Mass of hemoglobin }}}}{{{\rm{ Moles of hemoglobin }}}}\)

\(\begin{aligned}{}{\rm{ = }}\frac{{{\rm{1\;g}}}}{{{\rm{1}}{\rm{.47 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{\;mol}}}}\\{\rm{ = 6}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{4}}}{\rm{\;g/mol}}\end{aligned}\)

Therefore, the required value ofmolar mass is \(({\rm{6}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{4}}}{\rm{\;g/mol}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free