However, the temperatures provided are in degrees Celsius(\(^{\rm{o}}{\rm{C}}\)) andnot kelvins (\({\rm{K}}\)) (absolute scale).
As a result, we need toconvert temperatures from degrees Celsius to kelvins.
We have
\({0^\circ } = (0) + 273.15K\)
So,
\(\begin{aligned}{}{20^\circ } = (20) + 273.15K\\ = 283.15K\end{aligned}\)
Also, we need to convert the pressure given in bar to atm.
We have
\({\rm{1 bar = 0}}{\rm{.9869 atm}}\)
So,
\(\begin{aligned}{}{\rm{220bar = (220) \times (0}}{\rm{.9869) atm}}\\{\rm{ = 217}}{\rm{.118\;atm}}{\rm{.}}\end{aligned}\)
So, we have
\(\begin{aligned}{}{\rm{Initial Volume }}\left( {{{\rm{V}}_{\rm{1}}}} \right){\rm{ = 18\;L}}\\{\rm{Initial Temperature }}\left( {{{\rm{T}}_{\rm{1}}}} \right){\rm{ = 283}}{\rm{.15K}}{\rm{.}}\\{\rm{Initial Pressure }}\left( {{{\rm{P}}_{\rm{1}}}} \right){\rm{ = 217}}{\rm{.118\;atm}}\\{\rm{Final Volume }}\left( {{{\rm{V}}_{\rm{2}}}} \right){\rm{ = ?L}}{\rm{.}}\\{\rm{Final Temperature }}\left( {{{\rm{T}}_{\rm{2}}}} \right){\rm{ = 283}}{\rm{.15\;K}}{\rm{.}}\\{\rm{Final Pressure }}\left( {{{\rm{P}}_{\rm{2}}}} \right){\rm{ = 2}}{\rm{.37\;atm}}\end{aligned}\)
\(\begin{aligned}{}{{\rm{PV = nRT}}}\\{\frac{{{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = }}\frac{{{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}}\end{aligned}\)
Here, \({{\rm{T}}_{\rm{1}}}{\rm{ = }}{{\rm{T}}_{\rm{2}}}\)
So,
\(\begin{aligned}{}{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}{\rm{ = }}{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}\\{\rm{(217}}{\rm{.118) \times (18) = (2}}{\rm{.37) \times }}\left( {{{\rm{V}}_{\rm{2}}}} \right)\\{{\rm{V}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{(217}}{\rm{.118) \times (18)}}}}{{{\rm{2}}{\rm{.37}}}}\\{{\rm{V}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{3908}}{\rm{.124}}}}{{{\rm{2}}{\rm{.37}}}}\\{\rm{ = 1649\;L}}\end{aligned}\)
Therefore, at \({\rm{2}}{{\rm{0}}^{\rm{^\circ }}}\), the tank is not completely filled as \({{\rm{V}}_{\rm{2}}}{\rm{ = 1649\;L}}\).