Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A large scuba tank (see Figure \({\rm{9}}{\rm{.16}}\)) with a volume of \({\rm{18\;L}}\) is rated for a pressure of \({\rm{220 bar}}\). The tank is filled at \({\rm{2}}{{\rm{0}}^{\rm{^\circ }}}{\rm{C}}\) and contains enough air to supply \({\rm{1860\;L}}\) of air to a diver at a pressure of \({\rm{2}}{\rm{.37\;atm}}\) (a depth of \({\rm{45}}\)feet). Was the tank filled to capacity at \({\rm{2}}{{\rm{0}}^{\rm{^\circ }}}{\rm{C}}\)?

Short Answer

Expert verified

At \({\rm{2}}{{\rm{0}}^{\rm{^\circ }}}\)C, the tank is not completely filled.

Step by step solution

01

Definition of ideal gas

The ideal gas law, or the universal gas equation, is a state equation for a hypothetical ideal gas. Despite its shortcomings, the ideal gas law approximates the behaviour of many gases in a number of settings rather well.

02

Explanation for ideal gas law

The ideal gas law connects pressure, volume, temperature, and the number of moles in a gas.It is expressed as

\({\rm{PV = nRT}}\)

where,

\(\begin{aligned}{}{\rm{P = pressure of the gas}}{\rm{. }}\\{\rm{V = volume of the gas}}{\rm{.}}\\{\rm{ n = number of moles of the gas}}{\rm{.}}\\{\rm{ T = temperature of the gas}}{\rm{. }}\end{aligned}\)

and

\(\begin{aligned}{}{\rm{R = Ideal gas constant }}\\{\rm{ = 0}}{\rm{.08206\;L atm mo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\end{aligned}\)

ifthe amount of the gas \({\rm{(n)}}\)is in moles, temperature \({\rm{(T)}}\) is in kelvin \(\left( {\rm{K}} \right){\rm{,}}\)and pressure \({\rm{(P)}}\)is in atm.

03

Understanding Combined Gas Law

So, we have the Combined Gas Law with a constant number of moles of an ideal gas under two distinct circumstances.

\({\rm{PV = nRT}}\)

\(\begin{aligned}{}\frac{{{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = nR}}\\\frac{{{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ = nR}}\end{aligned}\)

i.e.\(\frac{{{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = }}\frac{{{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}\)

where,

\({{\rm{V}}_{\rm{1}}}{\rm{,}}{{\rm{V}}_{\rm{2}}}{\rm{ = }}\)Initial and final volumes,

\({{\rm{P}}_{\rm{1}}}{\rm{,}}{{\rm{P}}_{\rm{2}}}{\rm{ = }}\)Initial and final pressures, and

\({{\rm{T}}_{\rm{1}}}{\rm{,}}{{\rm{T}}_{\rm{2}}}{\rm{ = }}\)Initial and final absolute temperatures.

04

Evaluating final volume

However, the temperatures provided are in degrees Celsius(\(^{\rm{o}}{\rm{C}}\)) andnot kelvins (\({\rm{K}}\)) (absolute scale).

As a result, we need toconvert temperatures from degrees Celsius to kelvins.

We have

\({0^\circ } = (0) + 273.15K\)

So,

\(\begin{aligned}{}{20^\circ } = (20) + 273.15K\\ = 283.15K\end{aligned}\)

Also, we need to convert the pressure given in bar to atm.

We have

\({\rm{1 bar = 0}}{\rm{.9869 atm}}\)

So,

\(\begin{aligned}{}{\rm{220bar = (220) \times (0}}{\rm{.9869) atm}}\\{\rm{ = 217}}{\rm{.118\;atm}}{\rm{.}}\end{aligned}\)

So, we have

\(\begin{aligned}{}{\rm{Initial Volume }}\left( {{{\rm{V}}_{\rm{1}}}} \right){\rm{ = 18\;L}}\\{\rm{Initial Temperature }}\left( {{{\rm{T}}_{\rm{1}}}} \right){\rm{ = 283}}{\rm{.15K}}{\rm{.}}\\{\rm{Initial Pressure }}\left( {{{\rm{P}}_{\rm{1}}}} \right){\rm{ = 217}}{\rm{.118\;atm}}\\{\rm{Final Volume }}\left( {{{\rm{V}}_{\rm{2}}}} \right){\rm{ = ?L}}{\rm{.}}\\{\rm{Final Temperature }}\left( {{{\rm{T}}_{\rm{2}}}} \right){\rm{ = 283}}{\rm{.15\;K}}{\rm{.}}\\{\rm{Final Pressure }}\left( {{{\rm{P}}_{\rm{2}}}} \right){\rm{ = 2}}{\rm{.37\;atm}}\end{aligned}\)

\(\begin{aligned}{}{{\rm{PV = nRT}}}\\{\frac{{{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = }}\frac{{{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}}\end{aligned}\)

Here, \({{\rm{T}}_{\rm{1}}}{\rm{ = }}{{\rm{T}}_{\rm{2}}}\)

So,

\(\begin{aligned}{}{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}{\rm{ = }}{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}\\{\rm{(217}}{\rm{.118) \times (18) = (2}}{\rm{.37) \times }}\left( {{{\rm{V}}_{\rm{2}}}} \right)\\{{\rm{V}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{(217}}{\rm{.118) \times (18)}}}}{{{\rm{2}}{\rm{.37}}}}\\{{\rm{V}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{3908}}{\rm{.124}}}}{{{\rm{2}}{\rm{.37}}}}\\{\rm{ = 1649\;L}}\end{aligned}\)

Therefore, at \({\rm{2}}{{\rm{0}}^{\rm{^\circ }}}\), the tank is not completely filled as \({{\rm{V}}_{\rm{2}}}{\rm{ = 1649\;L}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An alternate way to state Avogadroโ€™s law is โ€œAll other things being equal, the number of molecules in a gas is directly proportional to the volume of the gas.โ€ (a) What is the meaning of the term โ€œdirectly proportional?โ€ (b) What are the โ€œother thingsโ€ that must be equal?

Consider the following questions:

(a) What is the total volume of the CO2(g) and H2O(g) at 600 C and 0.888 atm produced by the combustion of 1.00 L of C2H6 measured at STP?

(b) What is the partial pressure of H2O in the product gases?

The effect of chlorofluorocarbons (such as \({\rm{CC}}{{\rm{l}}_2}\;{{\rm{F}}_2}\) ) on the depletion of the ozone layer is well known. The use of substitutes, such as \({\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{H}}_2}\;{\rm{F}}(g)\), for the chlorofluorocarbons, has largely corrected the problem. Calculate the volume occupied by \(10.0\;{\rm{g}}\)of each of these compounds at STP:

(a) \({\rm{CC}}{{\rm{l}}_2}\;{{\rm{F}}_2}(g)\)

(b) \({\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{H}}_2}\;{\rm{F}}(g)\)

As \(1\;{\rm{g}}\)of the radioactive element radium decays over \(1\;\) year, it produces \(1.16 \times {10^{18}}\) alpha particles (helium nuclei). Each alpha particle becomes an atom of helium gas. What is the pressure in pascal of the helium gas produced if it occupies a volume of \(125\;{\rm{mL}}\)at a temperature of \({25^\circ }{\rm{C}}\) ?

A litre of methane gas, \({\rm{C}}{{\rm{H}}_4}\), at STP contains more atoms of hydrogen than does a litre of pure hydrogen gas, \({{\rm{H}}_2}\), at STP. Using Avogadro's law as a starting point, explain why.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free