Given:
\(\begin{aligned}{}{\rm{Volume (V) = ?L}}{\rm{. }}\\{\rm{Pressure (P) = 0}}{\rm{.992 atm}}{\rm{. }}\\{\rm{Temperature (T) = 2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{.}}\end{aligned}\))
The number of moles of the gas \({\rm{(n) = 8}}{\rm{.8}}\))moles.
Ideal gas constant \({\rm{(R) = 0}}{\rm{.08206\;atm\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\)).
So, we need to convert the temperature in degreesCelsiusto kelvins.
\({\rm{ }}{{\rm{0}}^{\rm{^\circ }}}{\rm{ = (0) + 273}}{\rm{.15K}}\)).
So,
\(\begin{aligned}{}{\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{ = (25) + 273}}{\rm{.15K}}\\{\rm{ = 298}}{\rm{.15K}}\\{\rm{PV = nRT }}\\{\rm{Volume (V) = }}\frac{{{\rm{nRT}}}}{{\rm{P}}}\\{\rm{ = }}\frac{{{\rm{(8}}{\rm{.8) \times (0}}{\rm{.08206) \times (298}}{\rm{.15)}}}}{{{\rm{(0}}{\rm{.992)}}}}\\{\rm{ = }}\frac{{{\rm{215}}{\rm{.30}}}}{{{\rm{0}}{\rm{.992}}}}\\{\rm{ = 217}}{\rm{.03\;L}}{\rm{.}}\end{aligned}\))
Hence, the volume of the balloon is \(\left( {\rm{V}} \right){\rm{ = 217}}{\rm{.03 L}}{\rm{.}}\))