Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Antimony pentachloride decomposes according to this equation:

An equilibrium mixture in a 5.00-L flask at 4480C contains 3.85 g of \({\rm{SbC}}{{\rm{l}}_5}\),9.14 g of \({\rm{SbC}}{{\rm{l}}_3}\)and 2.84 g of \({\rm{C}}{{\rm{l}}_2}\).How many grams of each will be found if the mixture is transferred into a 2.00-L flask at the same temperature?

Short Answer

Expert verified

The mass of\({\rm{SbC}}{{\rm{l}}_5}\)would be 6.23g

The mass of \({m_{SbCl}}\)would be 7.34g

The mass of \({m_{Cl}}\)would be 2.28g

Step by step solution

01

Find initial concentration.

Given information:

-The volume of a flask is 5.00L

At equilibrium

The mass of\({\rm{SbC}}{{\rm{l}}_5}\)is 3.85g \(\left( {\frac{{3.85{\rm{g}}}}{{299,02{\rm{g}}/{\rm{mol}}}} = 1.29 \times {{10}^{ - 2}}{\rm{mol}}} \right)\)

\(\left( {\left( {SbC{l_5}} \right) = \frac{{1.29 \times {{10}^{ - 2}}{\rm{mol}}}}{{5.00{\rm{L}}}} = 2.58 \times {{10}^{ - 3}}{\rm{M}}} \right)\)

-the mass of \({\rm{SbC}}{{\rm{l}}_3}\)is 9.14g\(\left( {\frac{{9.14{\rm{g}}}}{{228,13{\rm{g}}/{\rm{mol}}}} = 4.01 \times {{10}^{ - 2}}{\rm{mol}}} \right)\)

\(\left( {\left( {SbC{l_3}} \right) = \frac{{4.01 \times {{10}^{ - 2}}{\rm{mol}}}}{{5.00{\rm{L}}}} = 8.02 \times {{10}^{ - 3}}{\rm{M}}} \right)\)

-the mass of \({\rm{C}}{{\rm{l}}_2}\)is 2.84g\(\left( {\frac{{2.84}}{{70.91{\rm{g}}/{\rm{mol}}}} = 4.01 \times {{10}^{ - 2}}{\rm{mol}}} \right)\)

\(\left( {\left( {C{l_2}} \right) = \frac{{4.01 \times {{10}^{ - 2}}{\rm{mol}}}}{{5.00{\rm{L}}}} = 8.02 \times {{10}^{ - 3}}{\rm{M}}} \right)\)

- The equilibrium constant for this equation is

\({K_c} = \frac{{\left( {SbC{l_3}} \right) \times \left( {C{l_2}} \right]}}{{\left( {SbC{l_5}} \right)}} = \frac{{8.02 \times {{10}^{ - 3}} \times 8.02 \times {{10}^{ - 3}}}}{{2.58 \times {{10}^{ - 3}}}} = 0.0249\)

We have to find the mass of each gas will be found if the mixture is transferred into a 2.00 L flask. (The temperature remains the same)

- The initial concentrations, under new conditions are

\(\begin{array}{*{20}{c}}{\left( {{\rm{SbC}}{{\rm{l}}_5}} \right) = \frac{{1.29 \times {{10}^{ - 2}}{\rm{mol}}}}{{2.00{\rm{L}}}} = 6.45 \times {{10}^{ - 3}}{\rm{M}}}\\{\left( {{\rm{SbC}}{{\rm{l}}_3}} \right) = \frac{{4.01 \times {{10}^{ - 2}}{\rm{mol}}}}{{2.00{\rm{L}}}} = 2.005 \times {{10}^{ - 2}}{\rm{M}}}\\{\left( {{\rm{C}}{{\rm{l}}_2}} \right) = \frac{{4.01 \times {{10}^{ - 2}}{\rm{mol}}}}{{2.00{\rm{L}}}} = 2.005 \times {{10}^{ - 2}}{\rm{M}}}\end{array}\)

02

Find X value.

Since volume is decreased, the pressure will increase, hence the equilibrium will move to the left (because of the fewer number of gas molecules).

Now we will find the value of x

\({K_c} = \frac{{\left( {{\rm{SbC}}{{\rm{l}}_3}} \right) \times \left( {{\rm{C}}{{\rm{l}}_2}} \right)}}{{\left. {{{({\rm{SbCl}})}_5}} \right)}}\)

\(0.0249 = \frac{{\left( {2.005 \times {{10}^{ - 2}} - x} \right) \times \left( {2.005 \times {{10}^{ - 2}} - x} \right)}}{{6.45 \times {{10}^{ - 3}} + x}}\)

\(\begin{array}{*{20}{c}}{0.0249 \times \left( {6.45 \times {{10}^{ - 3}} + x} \right) = {{\left( {2.005 \times {{10}^{ - 2}} - x} \right)}^2}}\\{0.16 \times {{10}^{ - 3}} + 0.0249x = 4.02 \times {{10}^{ - 4}} - 4.01 \times {{10}^{ - 2}}x + {x^2}}\\{0 = {x^2} - 0.065x + 2.42 \times {{10}^{ - 4}}}\\{x = 3.965 \times {{10}^{ - 3}}{\rm{M}}}\end{array}\)

03

Find mass of gas.

The new equilibrium concentrations are [\({\rm{SbC}}{{\rm{l}}_5}\)] =\(6.45 \times {10^{ - 3}} + x = 10.415 \times {10^{ - 3}}{\rm{M}}\)

[\({\rm{SbC}}{{\rm{l}}_3}\)]\( = 2.005 \times {10^{ - 2}} - x = 16.085 \times {10^{ - 3}}{\rm{M}}\)

[\({\rm{C}}{{\rm{l}}_2}\)]\( = 2.005 \times {10^{ - 2}} - x = 16.085 \times {10^{ - 3}}{\rm{M}}\)

Therefore, the mass of each gas that would be found if the mixture is transferred into a 2.00 L flask is

\({\rm{SbC}}{{\rm{l}}_5}\)\( = 10.415 \times {10^{ - 3}}{\rm{M}} \times 2L \times 299,02{\rm{g}}/{\rm{mol}} = 6.23{\rm{g}}\)

\({m_{SbCl}}\)\( = 16.085 \times {10^{ - 3}}M \times 2L \times 228,13{\rm{g}}/{\rm{mol}} = \)7.34g

\({m_{Cl}}\)\( = 16.085 \times {10^{ - 3}}M \times 2L \times 70.91{\rm{g}}/{\rm{mol}} = 2.28{\rm{g}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the equilibrium concentrations of NO, O2, and NO2 in a mixture at 250 ยฐC that results from the reaction of 0.20 M NO and 0.10 M O2. (Hint: K is large; assume the reaction goes to completion then comes back to equilibrium.)

\(2NO(g) + {O_2}(g) \rightleftharpoons 2N{O_2}(g)\quad {K_c} = 2.3 \times 1{0^5}\;at\;25{0^o}C\)

What is the pressure of \(C{O_2}\)in a mixture at equilibrium that contains \(0.50atm\)\({H_2}\), \(2.0atm\)of \({H_2}O\), and \(1.0atm\)of \(CO\) at \(99{0^0}C\)?

\({H_2}(g) + C{O_2}(g) \rightleftharpoons {H_2}O(g) + CO(g)\)

\({K_P} = 1.6\,at\, 99{0^o}C\)

Show that the complete chemical equation, the total ionic equation, and the net ionic equation for the reaction represented by the equation \({\rm{KI}}(aq) + {{\rm{I}}_2}(aq) \rightleftharpoons {\rm{K}}{{\rm{I}}_3}(aq)\) give the same expression for the reaction quotient. \({\rm{K}}{{\rm{I}}_3}\)is composed of the ions \({{\rm{K}}^ + }\) and \({{\rm{I}}_3}^ - .\)

Question: Consider the reaction between \({{\rm{H}}_2}\)and \({{\rm{O}}_2}\)at 100 K\({K_P} = \frac{{{{\left( {{P_{{{\rm{H}}_2}{\rm{O}}}}} \right)}^2}}}{{\left( {{P_{{{\rm{O}}_2}}}} \right){{\left( {{P_{{{\rm{H}}_2}}}} \right)}^2}}} = 1.33 \times {10^{20}}\)

If 0.500 atm of H2 and 0.500 atm of O2are allowed to come to equilibrium at this temperature, what are the partial pressures of the components?

If you observe the following reaction at equilibrium, is it possible to tell whether the reaction stated with pure \(N{O_2}\) or with pure \({N_2}{O_4}\)? \(2N{O_2}(g) \rightleftharpoons {N_2}{O_4}(g)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free