Chapter 13: Q82E (page 760)
Question: Calculate the equilibrium concentrations that result when 0.25 M O2 and 1.0 M HCl react and come to equilibrium.
Short Answer
The equilibrium concentration is
Chapter 13: Q82E (page 760)
Question: Calculate the equilibrium concentrations that result when 0.25 M O2 and 1.0 M HCl react and come to equilibrium.
The equilibrium concentration is
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: Antimony pentachloride decomposes according to this equation:
An equilibrium mixture in a 5.00-L flask at 4480C contains 3.85 g of \({\rm{SbC}}{{\rm{l}}_5}\),9.14 g of \({\rm{SbC}}{{\rm{l}}_3}\)and 2.84 g of \({\rm{C}}{{\rm{l}}_2}\).How many grams of each will be found if the mixture is transferred into a 2.00-L flask at the same temperature?
Question : A 0.010Msolution of the weak acid HA has an osmotic pressure (see chapter on solutions and colloids) of 0.293 atm at 25 ยฐC. A 0.010Msolution of the weak acid HB has an osmotic pressure of 0.345 atm under the same conditions.
(a) Which acid has the larger equilibrium constant for ionization
HA[HA(aq) โ Aโ(aq) + H+(aq)]or HB[HB(aq) โ H+(aq) + Bโ(aq)]?
(b) What are the equilibrium constants for the ionization of these acids?
(Hint: Remember that each solution contains three dissolved species: the weak acid (HA or HB), the conjugate base (Aโ or Bโ), and the hydrogen ion (H+). Remember that osmotic pressure (like all colligative properties) is related to the total number of solute particles. Specifically for osmotic pressure, those concentrations are described by molarities.)
How will an increase in temperature affect each of the following equilibrium? How will a decrease in the volume of the reaction vessel affect each?
\(\begin{gathered} (a)2{H_2}O(g) \rightleftharpoons 2{H_2}(g) + {O_2}(g) \hfill \\ \Delta H = 484kJ \hfill \\ (b){N_2}(g) + 3{H_2}(g) \rightleftharpoons 2N{H_3}(g) \hfill \\ \Delta H = - 92.2kJ \hfill \\ (c)2Br(g) \rightleftharpoons B{r_2}(g) \hfill \\ \Delta H = - 224kJ \hfill \\ (d){H_2}(g) + {I_2}(s) \rightleftharpoons 2HI(g) \hfill \\ \Delta H = 53kJ \hfill \\ \end{gathered}\)
Convert the values of Kc to values of Kp or the values of Kp to values of Kc .
\((a)\,{N_2}\left( g \right) + 3{H_2}\left( g \right)\rightleftharpoons 2N{H_3}(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_C} = 0.50\,\,at\,\,400^\circ C\)
\((b){{\rm{H}}_2}(g) + {{\rm{I}}_2}(g)\rightleftharpoons 2HI(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_c} = 50.2\,at\,{448^\circ }{\rm{C}}\)
\((c)N{a_2}{\rm{S}}{{\rm{O}}_4} \cdot 10{{\rm{H}}_2}O(s)\rightleftharpoons N{a_2}{\rm{S}}{{\rm{O}}_4}(s) + 10{{\rm{H}}_2}O(g){K_P} = 4.08 \times {10^{ - 25}}at\,{25^\circ }{\rm{C}}\)
\((d){{\rm{H}}_2}{\rm{O}}(l)\rightleftharpoons {{\rm{H}}_2}{\rm{O}}(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_P} = 0.122\,at\,{50^\circ }{\rm{C}}\)
Question:Calculate the value of the equilibrium constant \({K_P}\) for the reaction \(2NO(g) + C{l_2}(g) \rightleftharpoons 2NOCl(g)\) from these equilibrium pressures: NO, \(0.050atm;C{l_2},0.30atm;NOCl,1.2atm\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.