Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the number of moles of \(HI\) that are at equilibrium with \(1.25mol\)of \({H_2}\)and \(1.25\,mol\)of \({I_2}\) in a \(5.00\,L\)flask at \(44{8^0}C\).\({H_2} + {I_2} \rightleftharpoons 2HI\)

\({K_c} = 50.2\,at\,44{8^o}C\)

Short Answer

Expert verified

The number of moles of\(HI\) is \(8.85mol\)

Step by step solution

01

Given information:

\({H_2} + {I_2} \rightleftharpoons 2HI\)

  1. Volume of flask \(V = 5.00L\)
  2. Value of equilibrium constant at \(44{8^0}C\)is \({K_c} = 50.2\)
  3. The Number of moles of \({I_2}\) at equilibrium is \(1.25mol\)
  4. The Number of moles of \({H_2}\) at equilibrium is \(1.25mol\)

The value of equilibrium molar concentration needs to be calculated using the equation relating equilibrium constant and molar concentrations.

02

Determine the concentration of \({H_2}\) and  \({I_2}\)

\(\begin{array}{}\left[ {{H_2}} \right] = \frac{{1.25{\rm{mol}}}}{{5.00{\rm{L}}}}\\ = 0.25\,M\end{array}\)

\(\begin{array}{c}\left[ {{I_2}} \right] = \frac{{1.25{\rm{mol}}}}{{5.00{\rm{L}}}}\\ = 0.25\,M\end{array}\)

03

Determine the concentration of \(HI\)

\(\begin{aligned}{}{K_C} &= \frac{{{{[HI]}^2}}}{{\left[ {{H_2}} \right] \times \left[ {{I_2}} \right]}}\\{[HI]^2} &= {K_c} \times \left[ {{H_2}} \right] \times \left[ {{I_2}} \right]\\{[HI]^2} &= 50.2 \times 0.25 \times 0.25\\{[HI]^2} &= 3.14\end{aligned}\)

\(\begin{array}{l}[HI] = \sqrt {3.14} \\(HI] = 1.77\,M\end{array}\)

04

Determine the number of moles of \(HI\)

\(\begin{aligned}{}\left[ {HI} \right]& = \frac{{{n_{HI}}}}{V}\\{n_{HI}} &= \left[ {HI} \right] \times V\\ &= 1.77\,{\rm{M}} \times 5.00\,L\\ &= 8.85\,mol\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Complete the changes in concentrations (or pressure, if requested) for each of the following reactions.

Which of the systems described in Exercise 13.16 give homogeneous equilibria? Which give heterogeneous equilibria?

(a) \({N_2}(g) + 3{H_2}(g)\rightleftharpoons 2N{H_3}(g)\)

(b) \(4N{H_3}(g) + 5{O_2}(g)\rightleftharpoons 4NO(g) + 6{H_2}O(g)\)

(c) \({N_2}{O_4}(g)\rightleftharpoons 2N{O_2}(g)\)

(d) \(C{O_2}(g) + {H_2}(g)\rightleftharpoons CO(g) + {H_2}O(g)\)

(e) \(N{H_4}Cl(s)\rightleftharpoons N{H_3}(g) + HCl(g)\)

(f) \(2\;Pb{\left( {N{O_3}} \right)_2}(s)\rightleftharpoons 2PbO(s) + 4N{O_2}(g) + {O_2}(g)\)

(g) \(2{H_2}(g) + {O_2}(g)\rightleftharpoons 2{H_2}O(l)\)

(h) \({S_8}(g)\rightleftharpoons 8\;S(g)\)

The initial concentrations or pressures of reactants and products are given for each of the following systems. Calculate the reaction quotient and determine the direction in which each system will proceed to reach equilibrium.

(a) \(\begin{aligned}{}2{\rm{N}}{{\rm{H}}_3}(\;{\rm{g}}) \rightleftharpoons {{\rm{N}}_2}(\;{\rm{g}}) + 3{{\rm{H}}_2}(\;{\rm{g}})\;\;\;{K_e} b= 17;\\\;\;\;\left( {{\rm{N}}{{\rm{H}}_3}} \right) = 0.50\,M,\;\left( {{{\rm{N}}_2}} \right) = 0.15\,M,\;\left( {{{\rm{H}}_2}} \right) = 0.12\,M\end{aligned}\)

(b) \(\begin{aligned}{}2{\rm{N}}{{\rm{H}}_3}(\;g) \rightleftharpoons {{\rm{N}}_2}(\;g) + 3{{\rm{H}}_2}(\;g)\;\;\;{K_P} = 6.8 \times {10^4};\\\;\;\;\;{\rm{initial}}\;{\rm{pressures:}}\,{\kern 1pt} {\rm{N}}{{\rm{H}}_3} = 2.00\;{\rm{atm}},\;{\kern 1pt} {\kern 1pt} {{\rm{N}}_2} = 10.00\,{\rm{atm}},\;{{\rm{H}}_2} = 10.00\,{\rm{atm}}\end{aligned}\)

(c) \(\begin{aligned}{}2{\rm{S}}{{\rm{O}}_3}(\;g) \rightleftharpoons 2{\rm{S}}{{\rm{O}}_2}(\;g) + {{\rm{O}}_2}(\;g)\;\;\;{K_c} = 0.230;\\\;{\kern 1pt} {\kern 1pt} {\kern 1pt} \;\left( {{\rm{S}}{{\rm{O}}_3}} \right) = 2.00\,M,\;\left( {{\rm{S}}{{\rm{O}}_2}} \right) = 2.00\,M,\;\left( {{{\rm{O}}_2}} \right) = 2.00\,M\end{aligned}\)

(d) \(\begin{aligned}{}2{\rm{S}}{{\rm{O}}_3}(\;g) \rightleftharpoons 2{\rm{S}}{{\rm{O}}_2}(\;g) + {{\rm{O}}_2}(\;g)\;\;\;{K_p} = 6.5\;{\rm{atm}};\\\;\;\;\;{\rm{initial}}\;{\rm{pressures:}}\;{\rm{S}}{{\rm{O}}_2} = 1.00\;{\rm{atm}},\;{{\rm{O}}_2} = 1.130\;{\rm{atm}},\;{\rm{S}}{{\rm{O}}_3} = 0\;{\rm{atm}}\end{aligned}\)

(e) \(\begin{aligned}{}2{\rm{NO}}(g) + {\rm{C}}{{\rm{l}}_2}(g) \rightleftharpoons 2{\rm{NOCl}}(g)\;\;\;{K_P} = 2.5 \times {10^3};\\\;\;\;\;{\rm{initial}}\;{\rm{pressures:}}\;{\rm{NO}} = 1.00\;{\rm{atm}},{\rm{C}}{{\rm{l}}_2} = 1.00\;{\rm{atm}},\;{\rm{NOCl}} = 0\;{\rm{atm}}\end{aligned}\)

(f) \(\begin{aligned}{}{{\rm{N}}_2}(\;g) + {{\rm{O}}_2}(\;g) \rightleftharpoons 2{\rm{NO}}(g)\;\;\;{K_c} = 0.050;\\\;\;\;\;\;\left( {{{\rm{N}}_2}} \right) = 0.100M,\;\left( {{{\rm{O}}_2}} \right) = 0.200M,\;({\rm{NO}}) = 1.00M\end{aligned}\)

Question: Consider the reaction between \({{\rm{H}}_2}\)and \({{\rm{O}}_2}\)at 100 K\({K_P} = \frac{{{{\left( {{P_{{{\rm{H}}_2}{\rm{O}}}}} \right)}^2}}}{{\left( {{P_{{{\rm{O}}_2}}}} \right){{\left( {{P_{{{\rm{H}}_2}}}} \right)}^2}}} = 1.33 \times {10^{20}}\)

If 0.500 atm of H2 and 0.500 atm of O2are allowed to come to equilibrium at this temperature, what are the partial pressures of the components?

Question:What is the value of the equilibrium constant at \(50{0^o}C\) for the formation of \(N{H_3}\)according to the following equation? N2(g) + 3H2(g) โ‡Œ 2NH3(g)

An equilibrium mixture of \(N{H_3}(g)\) \({H_2}(g)\) and \({N_2}(g)\) at \(50{0^o}C\) was found to contain\(1.35M{H_2},1.15M{N_2}\)and \(4.12\)\( \times 1{0^{ - 1}}MN{H_3}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free