Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When heated, iodine vapor dissociates according to this equation: I2 (g) ⇌ 2I (g). At 1274K a sample exhibits a partial pressure of I2 of 0.1122 and a partial pressure due to I atoms of 0.1378 atm. Determine the value of the equilibrium constant, Kp for the decomposition at 1274K

Short Answer

Expert verified

The value of equilibrium constant Kp=0.17.

Step by step solution

01

Define the Equilibrium constant

The Definition of equilibrium constant: a number that expresses the relationship between the amounts of products and reactants present at equilibrium in a reversible chemical reaction at a given temperature

02

Calculation of equilibrium constant

The need to calculate the equilibrium constant Kp for this reaction:

I2 (g)⇌ 2I (g).

We calculate the value Kp

\({K_p} = \frac{{p(I)_{eq}^2}}{{p{{\left( {{I_2}} \right)}_{eq}}}}\)

03

The equilibrium constant of the compound

The peq is equilibrium pressure of the compound. We are given all the data in the task:

\begin{aligned}{p{{(I)}_{eq}}=0.1378{\rm{atm}}}\\{p{{\left({{I_2}}\right)}_{eq}}=0.1122{\rm{atm}}}\end{aligned}

We calculate Kp

\begin{aligned}{{K_p}=\frac{{{{0.1378}^2}}}{{0.1122}}}\\{{K_p}=0.17}\end{aligned}

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At a temperature of 60 ̊C, the vapor pressure of water is 0.196atm. What is the value of the equilibrium constant Kp for the transformation at 60 ̊C? H2O (l)⇌ H2O(g)

A sample of ammonium chloride was heated in a closed container. NH4 Cl (s)⇌ NH3 (g) + HCl(g)at equilibrium, the pressure of NH3 (g)was found to be 1.75 atm. What is the value of the equilibrium constant, Kp, for the decomposition at this temperature?

For a titration to be effective, the reaction must be rapid and the yield of the reaction must essentially be 100%.

Is \({K_c} > 1,\; < 1\), or \( \approx 1\) for a titration reaction?

How can the pressure of water vapor are increased in the following equilibrium?

\({H_2}O(l) \rightleftharpoons {H_2}O(g)\) \(\Delta H = 41kJ\)

Nitrogen and oxygen react at high temperatures.

(a) Write the expression for the equilibrium constant \(\left( {{K_c}} \right)\)for the reversible reaction

\(\Delta H = 181kJ\)

(b) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\)at equilibrium if more \({O_2}\)is added?

(c) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\)at equilibrium if \({N_2}\)is removed?

(d) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\) at equilibrium if \(NO\)is added?

(e) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\)at equilibrium if the pressure on the system is increased by reducing the volume of the reaction vessel?

(f) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\) at equilibrium if the temperature of the system is increased?

(g) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\) at equilibrium if a catalyst is added?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free