Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Convert the values of Kc to values of Kp or the values of Kp to values of Kc .

\((a)\,{N_2}\left( g \right) + 3{H_2}\left( g \right)\rightleftharpoons 2N{H_3}(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_C} = 0.50\,\,at\,\,400^\circ C\)

\((b){{\rm{H}}_2}(g) + {{\rm{I}}_2}(g)\rightleftharpoons 2HI(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_c} = 50.2\,at\,{448^\circ }{\rm{C}}\)

\((c)N{a_2}{\rm{S}}{{\rm{O}}_4} \cdot 10{{\rm{H}}_2}O(s)\rightleftharpoons N{a_2}{\rm{S}}{{\rm{O}}_4}(s) + 10{{\rm{H}}_2}O(g){K_P} = 4.08 \times {10^{ - 25}}at\,{25^\circ }{\rm{C}}\)

\((d){{\rm{H}}_2}{\rm{O}}(l)\rightleftharpoons {{\rm{H}}_2}{\rm{O}}(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_P} = 0.122\,at\,{50^\circ }{\rm{C}}\)

Short Answer

Expert verified

\(\begin{aligned}{}a)\,{K_p} &= 1.6 \times {10^{ - 8}}\\b)\,{K_p} &= 50.2\\c)\,{K_c} &= 4.7 \times {10^{ - 59}}\\d)\,{K_c} &= 542.9\end{aligned}\)

Step by step solution

01

 Step 1: To calculate\({\rm{Kp}}\) from \({\rm{Kc}}\)

To calculate Kp from Kcor vice versa, we will use the following equation:

\({K_p} = {K_c} \cdot {(RT)^{\Delta n}}\)

Where\(R\)is gas constant\(\left( {8.314J{K^{ - 1}}mo{l^{ - 1}}} \right)\)and\(T\)is thermodynamic temperature.\(\Delta n\)can be defined for this hypothetical reaction:

\(aA(g) + bB(g) \to cC(g) + dD(g)\)

\(\Delta n = c + d - (a + b)\)

\((a,b,c,d\)are stoichiometry coefficients but only for the gas reactants or products).

02

Determine \({\rm{Kp}}\) for part (a)  

a) Here \(\Delta n\) is:

\(\Delta n = 2 - 1 - 3\)

\(\Delta n = - 2\)

Thermodynamic temperature is calculated like this:

\(T = t + 273.15\)

\(T = (400 + 273.15)K\)

\(T = 673.15K\)

Now we can calculate\({K_p}\):

\({K_p} = 0.5 \times {\left( {673.15\;{\rm{K}} \times 8.314J{K^{ - 1}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}} \right)^{ - 2}}\)

\({K_p} = 0.5 \times 3.2 \times {10^{ - 8}}\)

\({K_p} = 1.6 \times {10^{ - 8}}\)

03

Determine \({\rm{Kp}}\) for part (b)

b) Here \(\Delta n\) is:

\(\Delta n = 2 - 1 - 1\)

\(\Delta n = 0\)

Thermodynamic temperature is:

\(T = t + 273.15\)

\(T = (448 + 273.15)K\)

\(T = 721.15K\)

Now we can calculate\({K_p}\):

\({K_p} = 50.2 \times {\left( {721.15K \times 8.314{J^{ - 1}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}} \right)^0}\)

\({K_p} = 50.2 \times 1\)

\({K_p} = 50.2\)

04

Determine \({{\rm{K}}_{\rm{C}}}\) for part (c)

c)

\(\Delta n = 10 + 0 - 0\)

(Remember only\(\Delta n\)is calculated only for the gas reactants and products)

\(\Delta n = 10\)

Thermodynamic temperature is:

\(T = t + 273.15\)\(\)

\(T = 298.15K\)

Now we can calculate\({K_c}\):

\({K_p} = {K_c} \cdot {(RT)^{\Delta n}}\)

\({K_c} = \frac{{{K_p}}}{{{{(RT)}^{\Delta n}}}}\)

\({K_c} = \frac{{4.08 \times {{10}^{ - 25}}}}{{{{\left( {298.15K \times 8.314{J^{ - 1}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}} \right)}^{10}}}}\)

\({K_c} = \frac{{4.08 \times {{10}^{ - 25}}}}{{8.76 \times {{10}^{33}}}}\)

\({K_c} = 4.7 \times {10^{ - 59}}\)

05

Determine \({{\rm{K}}_{\rm{C}}}\) for part (d)

d)

\(\Delta n = 1 - 0\)

(Remember only\(\Delta n\)is calculated only for the gas reactants and products)

\(\Delta n = 1\)

Thermodynamic temperature is:

\(T = t + 273.15\)

\(T = (60 + 273.15)K\)

\(T = 333.15K\)

Now we can calculate\({K_c}\):

\({K_p} = {K_c} \cdot {(RT)^{\Delta n}}\)

\({K_c} = \frac{{{K_p}}}{{{{(RT)}^{\Delta n}}}}\)

\({K_c} = \frac{{0.196}}{{{{\left( {333.15K \times 8.314J{K^{ - 1}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}} \right)}^1}}}\)

\({K_c} = \frac{{0.196}}{{{{2769.8}^1}}}\)

\({K_c} = 542.9\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the number of moles of \(HI\) that are at equilibrium with \(1.25mol\)of \({H_2}\)and \(1.25\,mol\)of \({I_2}\) in a \(5.00\,L\)flask at \(44{8^0}C\).\({H_2} + {I_2} \rightleftharpoons 2HI\)

\({K_c} = 50.2\,at\,44{8^o}C\)

Convert the values of Kc to values of KP or the values of KP to values of Kc .

\((a)\,C{l_2}\left( g \right) + B{r_2}\left( g \right)\rightleftharpoons 2BrCl(g)\,\,\,{K_C} = 4.7 \times {10^{ - 2}}\,at\,25^\circ C\)

\((b)2{\rm{S}}{{\rm{O}}_2}(g) + {{\rm{O}}_2}(g)\rightleftharpoons 2{\rm{S}}{{\rm{O}}_3}(g){K_P} = 48.2 at {500^\circ} {\rm{C}}\)

\((c){\rm{CaC}}{{\rm{l}}_2} \cdot 6{{\rm{H}}_2}{\rm{O}}(s)\rightleftharpoons {\rm{CaC}}{{\rm{l}}_2}(s) + 6{{\rm{H}}_2}{\rm{O}}(g){K_P} = 5.09 \times {10^{ - 44}}at{25^\circ }{\rm{C}}\)

\((d){{\rm{H}}_2}{\rm{O}}(l)\rightleftharpoons {{\rm{H}}_2}{\rm{O}}(g)\,{K_P} = 0.196\,at\,{60^\circ }{\rm{C}}\)

Question: Consider the reaction between \({{\rm{H}}_2}\)and \({{\rm{O}}_2}\)at 100 K\({K_P} = \frac{{{{\left( {{P_{{{\rm{H}}_2}{\rm{O}}}}} \right)}^2}}}{{\left( {{P_{{{\rm{O}}_2}}}} \right){{\left( {{P_{{{\rm{H}}_2}}}} \right)}^2}}} = 1.33 \times {10^{20}}\)

If 0.500 atm of H2 and 0.500 atm of O2are allowed to come to equilibrium at this temperature, what are the partial pressures of the components?

What is the pressure of \(BrCl\) in an equilibrium mixture of \(C{l_2}\), \(B{r_2}\), and \(BrCl\) if the pressure of \(C{l_2}\) in the mixture is \(0.115atm\)and the pressure of \(B{r_2}\) in the mixture is \(0.450atm\)?

\(C{l_2}(g) + B{r_2}(g) \rightleftharpoons 2BrCl(g)\)

\({K_P} = 4.7 \times 1{0^{ - 2}}\)

For which of the reactions in Exercise 13.15 does\({K_c}\)(calculated using concentrations) equal\({K_p}\)(calculated using pressures)?

(a) \(C{H_4}(g) + C{l_2} \rightleftharpoons C{H_3}CI(g) + HCI(g)\)

(b) \({N_2}(g) + {O_2}(g)\rightleftharpoons 2NO(g)\)

(c) \(2S{O_2}(\;g) + {O_2}(\;g)\rightleftharpoons 2S{O_3}(\;g)\)

(d) \(BaS{O_3}(s)\rightleftharpoons BaO(s) + S{O_2}(g)\)

(e) \({P_4}(g) + 5{O_2}(g)\rightleftharpoons{P_4}{O_{10}}(s)\)

(f) \(B{r_2}(\;g)\rightleftharpoons 2Br(g)\)

(g) \(C{H_4}(g) + 2{O_2}(g)\rightleftharpoons C{O_2}(g) + 2{H_2}O(l)\)

(h)\(CuS{O_4} \times 5{H_2}O(s)\rightleftharpoons CuS{O_4}(s) + 5{H_2}O(g)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free